Fire Return Intervals (fire + return_interval)

Distribution by Scientific Domains


Selected Abstracts


Californian mixed-conifer forests under unmanaged fire regimes in the Sierra San Pedro Mártir, Baja California, Mexico

JOURNAL OF BIOGEOGRAPHY, Issue 1 2000
R. A. Minnich
Abstract Aim,This study appraises historical fire regimes for Californian mixed-conifer forests of the Sierra San Pedro Mártir (SSPM). The SSPM represents the last remaining mixed-conifer forest along the Pacific coast still subject to uncontrolled, periodic ground fire. Location,The SSPM is a north,south trending fault bound range, centred on 31°N latitude, 100 km SE of Ensenada, Baja California. Methods,We surveyed forests for composition, population structure, and historical dynamics both spatially and temporally over the past 65 years using repeat aerial photographs and ground sampling. Fire perimeter history was reconstructed based on time-series aerial photographs dating from 1942 to 1991 and interpretable back to 1925. A total of 256 1-ha sites randomly selected from aerial photographs were examined along a chronosequence for density and cover of canopy trees, density of snags and downed logs, and cover of non-conifer trees and shrubs. Twenty-four stands were sampled on-the-ground by a point-centred quarter method which yielded data on tree density, basal area, frequency, importance value, and shrub and herb cover. Results,Forests experience moderately intense understory fires that range in size to 6400 ha, as well as numerous smaller, low intensity burns with low cumulative spatial extent. SSPM forests average 25,45% cover and 65,145 trees per ha. Sapling densities were two to three times that of overstory trees. Size-age distributions of trees , 4 cm dbh indicate multi-age stands with steady-state dynamics. Stands are similar to Californian mixed conifer forests prior to the imposition of fire suppression policy. Livestock grazing does not appear to be suppressing conifer regeneration. Main conclusions,Our spatially-based reconstruction shows the open forest structure in SSPM to be a product of infrequent, intense surface fires with fire rotation periods of 52 years, rather than frequent, low intensity fires at intervals of 4,20 years proposed from California fire-scar dendrochronology (FSD) studies. Ground fires in SSPM were intense enough to kill pole-size trees and a significant number of overstory trees. We attribute long fire intervals to the gradual build-up of subcontinuous shrub cover, conifer recruitment and litter accumulation. Differences from photo interpretation and FSD estimates are due to assumptions made with respect to site-based (point) sampling of fire, and nonfractal fire intensities along fire size frequency distributions. Fire return intervals determined by FSD give undue importance to local burns which collectively use up little fuel, cover little area, and have little demographic impact on forests. [source]


Temporal coherence of aboveground net primary productivity in mesic grasslands

ECOGRAPHY, Issue 3 2008
Jana L. Heisler
Synchrony in ecological variables over wide geographic areas suggests that large-scale environmental factors drive the structure and function of ecosystems and override more local-scale environmental variation. Described also as coherence, this phenomenon has been documented broadly in the ecological literature and has recently received increasing attention as scientists attempt to quantify the impacts of global changes on organisms and their habitats. Using a mesic grassland site in North America, we assessed coherence in ecosystem function by quantifying similarity in aboveground net primary production (ANPP) dynamics in 48 permanent sampling locations (PSLs) over a 16-yr period. Our primary objective was to characterize coherence across a broad geographic region (with similar ecosystem structure and function), and we hypothesized that precipitation and a similar fire frequency would strengthen coherence between PSLs. All 48 PSLs at our site (Konza Prairie Biological Station, Manhattan, KS, USA; KPBS) were exposed to a similar regional driver of ANPP (precipitation); however, local drivers (including differences in fire frequency and soil depth at different topographic positions) varied strongly among individual PSLs. For the purpose of this assessment, the watershed-level experimental design of KPBS was considered a model, which represented different fire management strategies across the Great Plains Region. Our analyses revealed a site-level (KPBS) coherence in ANPP dynamics of 0.53 for the period of 1984,1999. Annual fire enhanced coherence among PSLs to 0.76, whereas less frequent fire (fire exclusion or a 4-yr fire return interval) failed to further increase coherence beyond that of the KPBS site level. Soil depth also strongly influenced coherence among PSLs with shallow soils at upland sites showing strong coherence across fire regimes and annually burned uplands closely linked to annual precipitation dynamics. The lack of coherence in ecosystem function in PSLs with deep soils and low fire frequencies suggests that conservation and management efforts will need to be more location specific in such areas where biotic interactions may be more important than regional abiotic drivers. [source]


Fire, flow and dynamic equilibrium in stream macroinvertebrate communities

FRESHWATER BIOLOGY, Issue 2 2010
ROBERT S. ARKLE
Summary 1. The complex effects of disturbances on ecological communities can be further complicated by subsequent perturbations within an ecosystem. We investigated how wildfire interacts with annual variations in peak streamflow to affect the stability of stream macroinvertebrate communities in a central Idaho wilderness, USA. We conducted a 4-year retrospective analysis of unburned (n = 7) and burned (n = 6) catchments, using changes in reflectance values (,NBR) from satellite imagery to quantify the percentage of each catchment's riparian and upland vegetation that burned at high and low severity. 2. For this wildland fire complex, increasing riparian burn severity and extent were associated with greater year-to-year variation, rather than a perennial increase, in sediment loads, organic debris, large woody debris (LWD) and undercut bank structure. Temporal changes in these variables were correlated with yearly peak flow in burned catchments but not in unburned reference catchments, indicating that an interaction between fire and flow can result in decreased habitat stability in burned catchments. 3. Streams in more severely burned catchments exhibited increasingly dynamic macroinvertebrate communities and did not show increased similarity to reference streams over time. Annual variability in macroinvertebrates was attributed, predominantly, to the changing influence of sediment, LWD, riparian cover and organic debris, as quantities of these habitat components fluctuated annually depending on burn severity and annual peak streamflows. 4. These analyses suggest that interactions among fire, flow and stream habitat may increase inter-annual habitat variability and macroinvertebrate community dynamics for a duration approaching the length of the historic fire return interval of the study area. [source]


BURNING PHYLOGENIES: FIRE, MOLECULAR EVOLUTIONARY RATES, AND DIVERSIFICATION

EVOLUTION, Issue 9 2007
Miguel Verdú
Mediterranean-type ecosystems are among the most remarkable plant biodiversity "hot spots" on the earth, and fire has traditionally been invoked as one of the evolutionary forces explaining this exceptional diversity. In these ecosystems, adult plants of some species are able to survive after fire (resprouters), whereas in other species fire kills the adults and populations are only maintained by an effective post-fire recruitment (seeders). Seeders tend to have shorter generation times than resprouters, particularly under short fire return intervals, thus potentially increasing their molecular evolutionary rates and, ultimately, their diversification. We explored whether seeder lineages actually have higher rates of molecular evolution and diversification than resprouters. Molecular evolutionary rates in different DNA regions were compared in 45 phylogenetically paired congeneric taxa from fire-prone Mediterranean-type ecosystems with contrasting seeder and resprouter life histories. Differential diversification was analyzed with both topological and chronological approaches in five genera (Banksia, Daviesia, Lachnaea, Leucadendron, and Thamnochortus) from two fire-prone regions (Australia and South Africa). We found that seeders had neither higher molecular rates nor higher diversification than resprouters. Such lack of differences in molecular rates between seeders and resprouters,which did not agree with theoretical predictions,may occur if (1) the timing of the switch from seeding to resprouting (or vice versa) occurs near the branch tip, so that most of the branch length evolves under the opposite life-history form; (2) resprouters suffer more somatic mutations and therefore counterbalancing the replication-induced mutations of seeders; and (3) the rate of mutations is not related to shorter generation times because plants do not undergo determinate germ-line replication. The absence of differential diversification is to be expected if seeders and resprouters do not differ from each other in their molecular evolutionary rate, which is the fuel for speciation. Although other factors such as the formation of isolated populations may trigger diversification, we can conclude that fire acting as a throttle for diversification is by no means the rule in fire-prone ecosystems [source]


Spatial and temporal variation of fire regimes in a mixed conifer forest landscape, Southern Cascades, California, USA

JOURNAL OF BIOGEOGRAPHY, Issue 8 2001
R. Matthew Beaty
Aim In this study, we evaluated the fire-forest mosaic of a mixed conifer forest landscape by testing the hypothesis that pre-fire suppression fire regime parameters vary with species composition (tree species), and environment (i.e. slope aspect, slope position, elevation). Location Our study was conducted in the 1587 ha Cub Creek Research Natural Area (CCRNA), Lassen National Forest, CA, USA. Methods We quantified the return interval, seasonal occurrence, size, rotation period, and severity of fires using dendroecology. Results Slope aspect, potential soil moisture, forest composition, and fire regime parameters in our study area co-vary. Median composite and point fire return intervals (FRI) were longest on higher, cooler, more mesic, north-facing (NF) slopes covered with white fir (Abies concolor), Douglas fir (Pseudotsuga menziesii),white fir, and red fir (A. magnifica),white fir forests, shortest on the dry, south-facing (SF) slopes covered with ponderosa pine (Pinus ponderosa),white fir forests and intermediate on west-facing slopes dominated by white fir,sugar pine (P. lambertiana),incense cedar (Libocedrus decurrens) forests. The spatial pattern for length of fire rotation (FR) was the same as that for FRI. Fires in CCRNA mixed conifer forests occurred mainly (90%) in the dormant season. Size of burns in CCRNA mixed conifer forests were generally small (mean=106 ha), however, during certain drought years widespread fires burned across fuel breaks and spread throughout the watershed. Fire severity was mainly high on upper slopes, low on lower slopes and moderate and low severity on middle slopes. Patterns of fire severity also varied with slope aspect. Fire frequency decreased dramatically in CCRNA after 1905. Conclusions In CCRNA, fire regime parameters [e.g. FRI, fire extent, FR, fire severity] varied widely with species composition, slope aspect and slope position. There was also temporal variation in fire extent with the most widespread fires occurring during drought years. The important contributions of topography and climate to variation in the fire regime indicates that exogenous factors play a key role in shaping the fire-forest structure mosaic and that the fire-forest structure mosaic is more variable, less predictable and less stable than previously thought. Finally, some characteristics of the fire regime (i.e. fire severity, season of burn) in CCRNA are different than those described for other mixed conifer forests and this suggests that there are geographical differences in mixed conifer fire regimes along the Pacific slope. [source]


Fire regimes and forest changes in mid and upper montane forests of the southern Cascades, Lassen Volcanic National Park, California, U.S.A.

JOURNAL OF BIOGEOGRAPHY, Issue 1 2000
A. H. Taylor
Abstract Aim Spatial and temporal variation in fire regime parameters and forest structure were assessed. Location A 2630-ha area of mid- and upper montane forest in Lassen Volcanic National Park (LVNP). Methods Two hypotheses were tested concerned with fire-vegetation relationships in southern Cascades forests: (1) fire regime parameters (return interval, season of burn, fire size, rotation period) vary by forest dominant, elevation and slope aspect; and (2) fire exclusion since 1905 has caused forest structural and compositional changes in both mid- and upper montane forests. The implications of the study for national park management are also discussed. Results Fire regime parameters varied by forest compositional group and elevation in LVNP. Median composite and point fire return intervals were shorter in low elevation Jeffrey pine (Pinus jeffreyi) (JP) (4,6 years, 16 years) and Jeffrey pine,white fir (Abies concolor) (JP-WF) (5,10 years, 22 years) and longer in high elevation red fir (Abies magnifica), western white pine (Pinus monticola) (RF-WWP) forests (9,27 years, 70 years). Median fire return intervals were also shorter on east-facing (6,9 years, 16.3 years) and longer on south- (11 years, 32.5 years) and west-facing slopes (22,28 years, 54-years) in all forests and in each forest composition group. Spatial patterns in fire rotation length were the same as those for fire return intervals. More growing season fires also occurred in JP (33.1%) and JP-WF (17.5%) than in RF-WWP (1.1%) forests. A dramatic decline in fire frequency occurred in all forests after 1905. Conclusions Changes in forest structure and composition occurred in both mid- and upper montane forests due to twentieth-century fire exclusion. Forest density increased in JP and JP-WF forests and white fir increased in JP-WF forests and is now replacing Jeffrey pine. Forest density only increased in some RF-WWP stands, but not others. Resource managers restoring fire to these now denser forests need to burn larger areas if fire is going to play its pre-settlement role in montane forest dynamics. [source]