Fire Frequency (fire + frequency)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Late-glacial and Holocene vegetation, climate and fire dynamics in the Serra dos Órgãos, Rio de Janeiro State, southeastern Brazil

GLOBAL CHANGE BIOLOGY, Issue 6 2010
HERMANN BEHLING
Abstract We present a high-resolution pollen and charcoal record of a 218 cm long sediment core from the Serra dos Órgãos, a subrange of the coastal Serra do Mar, located at 2130 m altitude in campos de altitude (high elevation grass- and shrubland) vegetation near Rio de Janeiro in southeastern Brazil to reconstruct past vegetation, climate and fire dynamics. Based on seven AMS 14C ages, the record represents at least the last 10 450 14C yr bp (12 380 cal years bp), The uppermost region was naturally covered by campos de altitude throughout the recorded period. Diverse montane Atlantic rain forest (ARF) occurred close to the studied peat bog at the end of the Late-glacial period. There is evidence of small Araucaria angustifolia populations in the study area as late as the early Holocene, after which point the species apparently became locally extinct. Between 10 380 and 10 170 14C yr bp (12 310,11 810 cal yr bp), the extent of campos de altitude was markedly reduced as montane ARF shifted rapidly upward to higher elevations, reflecting a very wet and warm period (temperatures similar to or warmer than present day) at the end of the Younger Dryas (YD) chronozone. This is in opposition to the broadly documented YD cooling in the northern Hemisphere. Reduced cross-equatorial heat transport and movement of the Intertropical Convergence Zone over northeastern Brazil may explain the YD warming. Markedly extended campos de altitude vegetation indicates dry climatic conditions until about 4910 14C yr bp (5640 cal yr bp). Later, wetter conditions are indicated by reduced high elevation grassland and the extension of ARF into higher elevation. Fire frequency was high during the early Holocene but decreased markedly after about 7020 14C yr bp (7850 cal yr bp). [source]


Habitat islands in fire-prone vegetation: do landscape features influence community composition?

JOURNAL OF BIOGEOGRAPHY, Issue 5-6 2002
Peter J. Clarke
Aim, Location Landscape features, such as rock outcrops and ravines, can act as habitat islands in fire-prone vegetation by influencing the fire regime. In coastal and sub-coastal areas of Australia, rock outcrops and pavements form potential habitat islands in a matrix of fire-prone eucalypt forests. The aim of this study was to compare floristic composition and fire response traits of plants occurring on rocky areas and contrast them with the surrounding matrix. Methods Patterns of plant community composition and fire response were compared between rocky areas and surrounding sclerophyll forests in a range of climate types to test for differences. Classification and ordination were used to compare floristic composition and univariate analyses were used to compare fire response traits. Results The rock outcrops and pavements were dissimilar in species composition from the forest matrix but shared genera and families with the matrix. Outcrops and pavements were dominated by scleromorphic shrubs that were mainly killed by fire and had post-fire seedling recruitment (obligate seeders). In contrast, the most abundant species in the adjacent forest matrix were species that sprout after fire (sprouters). Main conclusions Fire frequency and intensity are likely to be less on outcrops than in the forest matrix because the physical barrier of rock edges disrupts fires. Under the regime of more frequent fires, obligate seeders have been removed or reduced in abundance from the forest matrix. This process may have also operated over evolutionary time-scales and resulted in convergence towards obligate seeding traits on outcrop fire shadows. In contrast, there may have been convergence towards sprouting in the forest matrix as a result of selection for persistence under a regime of frequent fire. [source]


No detectable impacts of frequent burning on foliar C and N or insect herbivory in an Australian eucalypt forest

APPLIED VEGETATION SCIENCE, Issue 3 2009
Fiona J. Christie
Abstract Question: What is the effect of frequent low intensity prescribed fire on foliar nutrients and insect herbivory in an Australian eucalypt forest? Location: Lorne State Forest (Bulls Ground Frequent Burning Study), mid-north coast, New South Wales, Australia. Methods: Eighteen independent sites were studied representing three experimental fire regimes: fire exclusion (at least 45 years), frequently burnt (every 3 years for 35 years) and fire exclusion followed by the recent introduction of frequent burning (two fires in 6 years). Mature leaves were collected from the canopy of Eucalyptus pilularis trees at each site and analysed for nutrients and damage by invertebrate herbivores. Results: Almost 75% of all leaves showed some signs of leaf damage. The frequency of past fires had no effect on carbon and nitrogen content of canopy leaves. These results were consistent with assessments of herbivore damage where no significant differences were found in the amount of invertebrate herbivory damage to leaves across fire treatments. Conclusions: This eucalypt forest displayed a high degree of resilience to both frequent burning and fire exclusion as determined by foliar nutrients and damage by insect herbivores. Fire frequency had no detectable ecological impact on this aspect of forest health. [source]


Fire frequency influences composition and structure of the shrub layer in an Australian subcoastal temperate grassy woodland

AUSTRAL ECOLOGY, Issue 2 2009
PENNY J. WATSON
Abstract Little is known about the relationship between fire regimes and plant diversity in Australia's temperate grassy woodlands. The effect of fire frequency on shrubs in grassy woodland remnants across Western Sydney's Cumberland Plain was examined. Shrub species richness and composition were compared in sites that had experienced a high, moderate or low frequency of fire over the previous 20 years. Nine sites were surveyed, three in each fire frequency category; most sites, including all low-fire-frequency sites, had burnt 9,36 months prior to sampling. Fire frequency had a profound effect on the composition and structure of the shrub layer. Per cent frequency and density of the prickly shrub Bursaria spinosa (Pittosporaceae) was considerably higher in low-fire-frequency sites than where fires had occurred at least once a decade. In sites where fire had been absent for decades prior to a recent fire, this species dominated the landscape, while elsewhere it occurred as clumps in a grassy matrix. Per cent frequency of other native shrubs, particularly obligate seeders, was greatest at moderate fire frequencies. Exotic shrubs were recorded most often where fire had been rare. While ordination clearly separated out the low-fire-frequency sites, complete separation between high- and moderate-fire-frequency blocks was not achieved. The increase in Bursaria in the absence of fire mirrors the encroachment of woody plants into a range of grassy ecosystems around the world. The sensitivity of obligate seeder species, many of them short-lived legumes with fire-cued seeds, to both very frequent and very infrequent fire shows the vulnerability of these species to extreme fire regimes, despite the safeguards conferred by hard-seededness. Competition from Bursaria, as well as loss of viable seed in the soil, may have contributed to the low frequency of these species after a long inter-fire interval. [source]


Temporal coherence of aboveground net primary productivity in mesic grasslands

ECOGRAPHY, Issue 3 2008
Jana L. Heisler
Synchrony in ecological variables over wide geographic areas suggests that large-scale environmental factors drive the structure and function of ecosystems and override more local-scale environmental variation. Described also as coherence, this phenomenon has been documented broadly in the ecological literature and has recently received increasing attention as scientists attempt to quantify the impacts of global changes on organisms and their habitats. Using a mesic grassland site in North America, we assessed coherence in ecosystem function by quantifying similarity in aboveground net primary production (ANPP) dynamics in 48 permanent sampling locations (PSLs) over a 16-yr period. Our primary objective was to characterize coherence across a broad geographic region (with similar ecosystem structure and function), and we hypothesized that precipitation and a similar fire frequency would strengthen coherence between PSLs. All 48 PSLs at our site (Konza Prairie Biological Station, Manhattan, KS, USA; KPBS) were exposed to a similar regional driver of ANPP (precipitation); however, local drivers (including differences in fire frequency and soil depth at different topographic positions) varied strongly among individual PSLs. For the purpose of this assessment, the watershed-level experimental design of KPBS was considered a model, which represented different fire management strategies across the Great Plains Region. Our analyses revealed a site-level (KPBS) coherence in ANPP dynamics of 0.53 for the period of 1984,1999. Annual fire enhanced coherence among PSLs to 0.76, whereas less frequent fire (fire exclusion or a 4-yr fire return interval) failed to further increase coherence beyond that of the KPBS site level. Soil depth also strongly influenced coherence among PSLs with shallow soils at upland sites showing strong coherence across fire regimes and annually burned uplands closely linked to annual precipitation dynamics. The lack of coherence in ecosystem function in PSLs with deep soils and low fire frequencies suggests that conservation and management efforts will need to be more location specific in such areas where biotic interactions may be more important than regional abiotic drivers. [source]


Native American impacts on fire regimes of the California coastal ranges

JOURNAL OF BIOGEOGRAPHY, Issue 3 2002
Jon E. Keeley
Aim Native American burning impacts on California shrubland dominated landscapes are evaluated relative to the natural lightning fire potential for affecting landscape patterns. Location Focus was on the coastal ranges of central and southern California. Methods Potential patterns of Indian burning were evaluated based upon historical documents, ethnographic accounts, archaeological records and consideration of contemporary land management tactics. Patterns of vegetation distribution in this region were evaluated relative to environmental factors and the resilience of the dominant shrub vegetation to different fire frequencies. Results Lightning fire frequency in this region is one of the lowest in North America and the density of pre-Columbian populations was one of the highest. Shrublands dominate the landscape throughout most of the region. These woody communities have weak resilience to high fire frequency and are readily displaced by annual grasses and forbs under high fire frequency. Intact shrublands provided limited resources for native Americans and thus there was ample motivation for using fire to degrade this vegetation to an open mosaic of shrubland/grassland, not unlike the agropastoral modification of ecologically related shrublands by Holocene peoples in the Mediterranean Basin. Alien-dominated grasslands currently cover approximately one-quarter of the landscape and less than 1% of these grasslands have a significant native grass presence. Ecological studies in the Californian coastal ranges have failed to uncover any clear soil or climate factors explaining grassland and shrubland distribution patterns. Main conclusions Coastal ranges of California were regions of high Indian density and low frequency of lightning fires. The natural vegetation dominants on this landscape are shrubland vegetation that often form dense impenetrable stands with limited resources for Native Americans. Natural fire frequencies are not high enough to maintain these landscapes in habitable mixtures of shrublands and grasslands but such landscape mosaics are readily produced with additional human subsidy of ignitions. It is hypothesized that a substantial fraction of the landscape was type converted from shrubland to grassland and much of the landscape that underwent such type conversion has either been maintained by Euro-American land management practices or resisted recolonization of native shrublands. It appears that these patterns are disturbance dependent and result from anthropogenic alteration of landscapes initiated by Native Americans and sustained and expanded upon by Euro-American settlers. [source]


A spatial model of coexistence among three Banksia species along a topographic gradient in fire-prone shrublands

JOURNAL OF ECOLOGY, Issue 5 2002
J. Groeneveld
Summary 1A spatially explicit, rule-based model for three co-occurring Banksia species was developed to investigate coexistence mediating processes in a fire-prone shrubland in western Australia. Fecundity, recruitment, mortality and other biological data for two non-sprouting (B. hookeriana, B. prionotes) and one resprouting (B. attenuata) species were available from 15 years of empirical field studies. 2Without interspecific competition, each species could persist for a wide range of fire intervals (10 to > 20 years). The resprouting species performed better under shorter fire intervals (10,13 years), while both non-sprouting species were favoured by longer (15 to > 20 years) fire intervals. These results conform with those obtained from single-species, non-spatial population models. 3When interspecific competition for space was included in the model, all three species exhibited optima at shorter fire intervals and with a narrower range than in isolation. The three species did not co-occur under any fire regime. At intermediate fire frequencies (11,13 years), B. hookeriana excluded the other species, while for longer intervals between fires B. prionotes became dominant. 4The introduction of temporal (stochastic) variability in fire intervals (drawn from a normal distribution) failed to produce coexistence, unless spatial variability as a spatial ignition gradient was also included. The spatial arrangement of the non-sprouters observed in the field was then reproduced. 5Observed patterns of coexistence and spatial distributions of all species occurred when a spatial establishment gradient for the resprouter species was included in the model (individuals of B. attenuata are known to produce more seeds in swales than on dune crests and recruit seedlings here more frequently). 6Coexistence appears to be highly dependent upon the mean interfire period in combination with subtle gradients associated with fire propagation and recruitment conditions. Variation around the mean fire interval is less critical. When the system is modelled over a long time period (1500 years) coexistence is most strongly favoured for a narrow window of mean fire intervals (12,14 years). [source]


Plant functional group responses to fire frequency and tree canopy cover gradients in oak savannas and woodlands

JOURNAL OF VEGETATION SCIENCE, Issue 1 2007
David W. Peterson
Abstract Questions: How do fire frequency, tree canopy cover, and their interactions influence cover of grasses, forbs and understorey woody plants in oak savannas and woodlands? Location: Minnesota, USA. Methods: We measured plant functional group cover and tree canopy cover on permanent plots within a long-term prescribed fire frequency experiment and used hierarchical linear modeling to assess plant functional group responses to fire frequency and tree canopy cover. Results: Understorey woody plant cover was highest in unburned woodlands and was negatively correlated with fire frequency. C4-grass cover was positively correlated with fire frequency and negatively correlated with tree canopy cover. C3-grass cover was highest at 40% tree canopy cover on unburned sites and at 60% tree canopy cover on frequently burned sites. Total forb cover was maximized at fire frequencies of 4,7 fires per decade, but was not significantly influenced by tree canopy cover. Cover of N-fixing forbs was highest in shaded areas, particularly on frequently burned sites, while combined cover of all other forbs was negatively correlated with tree canopy cover. Conclusions: The relative influences of fire frequency and tree canopy cover on understorey plant functional group cover vary among plant functional groups, but both play a significant role in structuring savanna and woodland understorey vegetation. When restoring degraded savannas, direct manipulation of overstorey tree canopy cover should be considered to rapidly reduce shading from fire-resistant overstorey trees. Prescribed fires can then be used to suppress understorey woody plants and promote establishment of light-demanding grasses and forbs. [source]


Temporal patterns of genetic variation across a 9-year-old aerial seed bank of the shrub Banksia hookeriana (Proteaceae)

MOLECULAR ECOLOGY, Issue 13 2005
LUKE G. BARRETT
Abstract The pattern of accumulation of genetic variation over time in seed banks is poorly understood. We examined the genetic structure of the aerial seed bank of Banksia hookeriana within a single 15-year-old population in fire-prone southwestern Australia, and compared genetic variation between adults and each year of a 9-year-old seed bank using amplified fragment length polymorphism (AFLP). B. hookeriana is well suited to the study of seed bank dynamics due to the canopy storage of its seeds, and because each annual crop can be identified. A total of 304 seeds from nine crop years and five maternal plants were genotyped, along with 113 plants from the adult population. Genetic variation, as assessed by the proportion of polymorphic markers (Pp) and Shannon's index (I), increased slightly within the seed bank over time, while gene diversity (Hj), did not change. Pp, I, and Hj all indicated that genetic variation within the seed bank quickly approached the maximal level detected. Analysis of molecular variance revealed that less than 4% of variation could be accounted for by variation among seeds produced in different years, whereas there was greater differentiation among maternal plants (12.7%), and among individual seeds produced by different maternal plants (83.4%). With increasing population age, offspring generated each year were slightly more outbred, as indicated by an increase in the mean number of nonmaternal markers per offspring. There were no significant differences for Hj or I between adults and the seed bank. Viability of seeds decreased with age, such that the viability of 9-year-old seeds was half that of 2-year-old seeds. These results suggest that variable fire frequencies have only limited potential to influence the amount of genetic variation stored within the seed bank of B. hookeriana. [source]


Fire frequency influences composition and structure of the shrub layer in an Australian subcoastal temperate grassy woodland

AUSTRAL ECOLOGY, Issue 2 2009
PENNY J. WATSON
Abstract Little is known about the relationship between fire regimes and plant diversity in Australia's temperate grassy woodlands. The effect of fire frequency on shrubs in grassy woodland remnants across Western Sydney's Cumberland Plain was examined. Shrub species richness and composition were compared in sites that had experienced a high, moderate or low frequency of fire over the previous 20 years. Nine sites were surveyed, three in each fire frequency category; most sites, including all low-fire-frequency sites, had burnt 9,36 months prior to sampling. Fire frequency had a profound effect on the composition and structure of the shrub layer. Per cent frequency and density of the prickly shrub Bursaria spinosa (Pittosporaceae) was considerably higher in low-fire-frequency sites than where fires had occurred at least once a decade. In sites where fire had been absent for decades prior to a recent fire, this species dominated the landscape, while elsewhere it occurred as clumps in a grassy matrix. Per cent frequency of other native shrubs, particularly obligate seeders, was greatest at moderate fire frequencies. Exotic shrubs were recorded most often where fire had been rare. While ordination clearly separated out the low-fire-frequency sites, complete separation between high- and moderate-fire-frequency blocks was not achieved. The increase in Bursaria in the absence of fire mirrors the encroachment of woody plants into a range of grassy ecosystems around the world. The sensitivity of obligate seeder species, many of them short-lived legumes with fire-cued seeds, to both very frequent and very infrequent fire shows the vulnerability of these species to extreme fire regimes, despite the safeguards conferred by hard-seededness. Competition from Bursaria, as well as loss of viable seed in the soil, may have contributed to the low frequency of these species after a long inter-fire interval. [source]


Effect of a postfire environment on the establishment of Prosopis caldenia seedlings in central semiarid Argentina

AUSTRAL ECOLOGY, Issue 5 2007
ANA E. De VILLALOBOS
Abstract The objective of this work was to evaluate postfire environmental effects on the emergence, survival and growth of Prosopis caldenia seedlings in relation to different controlled fire frequencies, seed scarification methods, and planting site. Seedling emergence was significantly higher in experimental units exposed twice and three times to controlled fire than in unburned experimental units. The highest average seedling survival was recorded with triple exposure to controlled fires. Emergence, survival and growth of seedlings from seeds exposed to acid scarification and 600°C for 5 min were higher in the burned experimental units than in the unburned ones. In the former, seedling survival was higher beneath a P. caldenia canopy than in an adjacent open site, though seedling emergence was similar in both planting sites. Our results suggest that postfire conditions characterized by a reduction in the vegetative cover and competition interference and an increase in soil temperatures and nutrients levels (e.g. nitrogen and phosphorus) may facilitate the establishment of P. caldenia seedlings in the Caldenal. [source]


The effect of short fire cycles on the cover and density of understorey sprouting species in South African mountain fynbos

DIVERSITY AND DISTRIBUTIONS, Issue 5 2000
J. H. J. Vlok
Abstract. Two South African mountain fynbos sites were studied to determine the effect of short fire cycles on the cover and density of understorey sprouting species and their subsequent effect on plant-species richness. Frequent fires (4,6 years between burns) increased the cover of sprouting species by 32% when compared to an adjacent site where the penultimate fire was 28 years previously. There was little or no effect of fire frequency on the densities of understorey sprouters; however, individuals were larger at sites with short fire cycles. The response of individual species of sprouters was variable with one species, Hypodiscus striatus, showing no response to fire frequency. The impact of sprouting species on the species richness of the plant community was great. The mean number of species recorded in quadrats with a high cover of sprouters was 60% lower in comparison to quadrats with low covers or under the burned skeletons of overstorey proteas. The effect of sprouters was consistent for all functional groups of species (i.e. sprouters, non-sprouters, short-lived and long-lived species), in each case reducing the number of species present. [source]


Temporal coherence of aboveground net primary productivity in mesic grasslands

ECOGRAPHY, Issue 3 2008
Jana L. Heisler
Synchrony in ecological variables over wide geographic areas suggests that large-scale environmental factors drive the structure and function of ecosystems and override more local-scale environmental variation. Described also as coherence, this phenomenon has been documented broadly in the ecological literature and has recently received increasing attention as scientists attempt to quantify the impacts of global changes on organisms and their habitats. Using a mesic grassland site in North America, we assessed coherence in ecosystem function by quantifying similarity in aboveground net primary production (ANPP) dynamics in 48 permanent sampling locations (PSLs) over a 16-yr period. Our primary objective was to characterize coherence across a broad geographic region (with similar ecosystem structure and function), and we hypothesized that precipitation and a similar fire frequency would strengthen coherence between PSLs. All 48 PSLs at our site (Konza Prairie Biological Station, Manhattan, KS, USA; KPBS) were exposed to a similar regional driver of ANPP (precipitation); however, local drivers (including differences in fire frequency and soil depth at different topographic positions) varied strongly among individual PSLs. For the purpose of this assessment, the watershed-level experimental design of KPBS was considered a model, which represented different fire management strategies across the Great Plains Region. Our analyses revealed a site-level (KPBS) coherence in ANPP dynamics of 0.53 for the period of 1984,1999. Annual fire enhanced coherence among PSLs to 0.76, whereas less frequent fire (fire exclusion or a 4-yr fire return interval) failed to further increase coherence beyond that of the KPBS site level. Soil depth also strongly influenced coherence among PSLs with shallow soils at upland sites showing strong coherence across fire regimes and annually burned uplands closely linked to annual precipitation dynamics. The lack of coherence in ecosystem function in PSLs with deep soils and low fire frequencies suggests that conservation and management efforts will need to be more location specific in such areas where biotic interactions may be more important than regional abiotic drivers. [source]


Effects of increasing fire frequency on black carbon and organic matter in Podzols of Siberian Scots pine forests

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 3 2005
C. I. Czimczik
Summary Fires in boreal forests frequently convert organic matter in the organic layer to black carbon, but we know little of how changing fire frequency alters the amount, composition and distribution of black carbon and organic matter within soils, or affects podzolization. We compared black carbon and organic matter (organic carbon and nitrogen) in soils of three Siberian Scots pine forests with frequent, moderately frequent and infrequent fires. Black carbon did not significantly contribute to the storage of organic matter, most likely because it is consumed by intense fires. We found 99% of black carbon in the organic layer; maximum stocks were 72 g m,2. Less intense fires consumed only parts of the organic layer and converted some organic matter to black carbon (> 5 g m,2), whereas more intense fires consumed almost the entire organic layer. In the upper 0.25 m of the mineral soil, black carbon stocks were 0.1 g m,2 in the infrequent fire regime. After fire, organic carbon and nitrogen in the organic layer accumulated with an estimated rate of 14.4 g C m,2 year,1 or 0.241 g N m,2 year,1. Maximum stocks 140 years after fire were 2190 g organic C m,2 and 40 g N m,2, with no differences among fire regimes. With increasing fire frequency, stocks of organic carbon increased from 600 to 1100 g m,2 (0,0.25 m). Stocks of nitrogen in the mineral soil were similar among the regimes (0.04 g m,2). We found that greater intensities of fire reduce amounts of organic matter in the organic layer but that the greater frequencies may slightly increase amounts in the mineral soil. [source]


Environmental and developmental controls on specific leaf area are little modified by leaf allometry

FUNCTIONAL ECOLOGY, Issue 4 2008
R. Milla
Summary 1Recent work shows that large leaves tend to require higher biomass investments per unit leaf area than small leaves. As a consequence, specific leaf area (SLA), which is a focus trait for a bulk of physiological and ecological research programs, is dependent on leaf size variation. Here, we address whether size dependency alters the outcome of research dealing with SLA responses to environmental or developmental change. 2We compiled lamina mass (M) and surface area (A) data for 2158 leaves of 26 species, coming from studies investigating the reaction of SLA to variation in rainfall, growth,season length, light intensity, atmospheric CO2, fire frequency, type of branch and leaf and plant age. We fitted the function M = a Ab to the data of each experimental situation separately, and implemented a method to split SLA response as measured in the original study (SLADm) into response due to leaf size dependency (SLADa), and response due to treatment effects, after controlling for leaf size dependency (SLADt). 3The sign of the reaction did not differ between SLADm and SLADt. However, the magnitude of that response changed for most contrasts, though in variable ways. 4Conclusions of past experiments hold, for the most part, after re-analysis including size dependency. However, given the large heterogeneity found here, we advise that future work investigating SLA be prepared to account for leaf size dependency when the factors under focus are suspected to alter leaf size. [source]


Long-term fire frequency variability in the eastern Canadian boreal forest: the influences of climate vs. local factors

GLOBAL CHANGE BIOLOGY, Issue 5 2009
ADAM A. ALI
Abstract The influence of climatic and local nonclimatic factors on the fire regime of the eastern Canadian boreal forest over the last 8000 years is investigated by examining charred particles preserved in four lacustrine deposits. Herein, we compare the distribution of fire-free intervals (FFIs) and the synchronicity of fire events among sites, using Ripley's K -function to determine the extent of the role of local-scale vs. large-scale processes with respect to fire control. Between 8000 and 5800 cal. bp (calibrated years before present) the climatic and ecological conditions were less conducive to fire events than after this date. After 5800 cal. bp, the number of fires per 1000 years (fire frequency) progressively increased, reaching a maximum ca. 3400 cal. bp. There was a sharp decrease in fire frequency during the last 800 years. Between 8000 and 4000 cal. bp, comparable FFIs and synchronous fire episodes were determined for the study sites. During this period, the fire frequency was predominantly controlled by climate. After 4000 cal. bp, two sites displayed independent fire histories (different FFI distributions or asynchronous fire events), underlining the important influence of local factors, including short-term fuel wetness, characteristics of the watershed and landscape connectivity, in determining fire occurrence. We conclude that climatic changes occurred during the last 4000 years that induced a rise in the water table; this may explain the high spatial heterogeneity in fire history. Current and projected global climatic changes may cause similar spatial variability in fire frequency. [source]


Organic carbon and carbon isotopes in modern and 100-year-old-soil archives of the Russian steppe

GLOBAL CHANGE BIOLOGY, Issue 10 2002
Margaret S. Torn
Abstract Archived soils can provide valuable information about changes in the carbon and carbon isotope content of soils during the past century. We characterized soil carbon dynamics in a Russian steppe preserve using a 100-year-old-soil archive and modern samples collected from the same site. The site has been protected since 1885 to the present, during which time the region has experienced widespread conversion to cultivation, a decrease in fire frequency, and a trend of increasing precipitation. In the preserve, the amount of organic carbon did not change appreciably between the 1900 and 1997 sampling dates, with 32 kg C/m2 in the top meter and a third of that in the top 20 cm. Carbon and nitrogen stocks varied by less than 6% between two replicate modern soil pits or between the modern sites and the archive. Radiocarbon content decreased with depth in all sites and the modern SOM had positive , values near the surface due to nuclear weapons testing in the early 1960s. In the upper 10 cm, most of the SOM had a turnover time of 6,10 years, according to a model fit to the radiocarbon content. Below about 10 cm, the organic matter was almost all passive material with long (millennial) turnover times. Soil respiration ,14CO2 on a summer day was 106,109,, an isotopic disequilibrium of about 9, relative to atmospheric 14CO2. In both the modern and archive soil, the relative abundance of 13C in organic matter increased with depth by 2, in the upper meter from ,13C = --26, at 5 cm to --24, below a meter. In addition, the slope of ,13C vs. depth below 5 cm was the same for both soils. Given the age of the soil archive, these results give clear evidence that the depth gradients are not due to depletion of atmospheric 13CO2 by fossil fuel emissions but must instead be caused by isotopic fractionation between plant litter inputs and preservation of SOM. Overall, the data show that these soils have a large reservoir of recalcitrant C and stocks had not changed between sampling dates 100 years apart. [source]


Simulating climate change impacts on fire frequency and vegetation dynamics in a Mediterranean-type ecosystem

GLOBAL CHANGE BIOLOGY, Issue 5 2002
Florent Mouillot
Abstract The impacts of climate change on Mediterranean-type ecosystems may result from complex interactions between direct effects on water stress and subsequent modifications in flammability and fire regime leading to changes in standing biomass and plant species composition. We analysed these interrelations through a simulation approach combining scenarios of climate change developed from GCM results and a multispecies functional model for vegetation dynamics, SIERRA. A fire risk procedure based on weekly estimates of vegetation water stress has been implemented. Using climate data from 1960 to 1997, simulations of a typical maquis woodland community have been performed as baseline and compared with two climate scenarios: a change in the rainfall regime alone, and changes in both rainfall and air temperature. Climate changes are defined by an increase in temperature, particularly in summer, and a change in the rainfall pattern leading to a decrease in low rainfall events, and an increase in intense rainfall events. The results illustrate the lack of drastic changes in the succession process, but highlight modifications in the water budget and in the length of the drought periods. Water stress lower than expected regarding statistics on the current climate is simulated, emphasizing a long-term new equilibrium of vegetation to summer drought but with a higher sensibility to rare events. Regarding fire frequency, climate changes tend to decrease the time interval between two successive fires from 20 to 16 years for the maquis shrubland and from 72 to 62 years in the forested stages. This increase in fire frequency leads to shrub-dominated landscapes, which accentuates the yield of water by additional deep drainage and runoff. [source]


Fire regimes of China: inference from statistical comparison with the United States

GLOBAL ECOLOGY, Issue 5 2009
Meg A. Krawchuk
ABSTRACT Aim, Substantial overlap in the climate characteristics of the United States and China results in similar land-cover types and weather conditions, especially in the eastern half of the two countries. These parallels suggest similarities in fire regimes as well, yet relatively little is known about the historical role of fire in Chinese ecosystems. Consequently, we aimed to infer fire regime characteristics for China based on our understanding of climate,fire relationships in the United States. Location, The conterminous United States and the People's Republic of China. Methods, We used generalized additive models to quantify the relationship between reference fire regime classes adopted by the LANDFIRE initiative in the United States, and a global climate data set. With the models, we determined which climate variables best described the distribution of fire regimes in the United States then used these models to predict the spatial distribution of fire regimes in China. The fitted models were validated quantitatively using receiver operating characteristic area under the curve (AUC). We validated the predicted fire regimes in China by comparison with palaeoecological fire data and satellite-derived estimates of current fire activity. Results, Quantitative validation using the AUC indicated good discrimination of the distribution of fire regimes by models for the United States. Overall, fire regimes with more frequent return intervals were more likely in the east than in the west. The resolution of available historical and prehistorical fire data for China, including sediment cores, allowed only coarse, qualitative validation, but provided supporting evidence that fire has long been a part of ecosystem function in eastern China. MODIS satellite data illustrated that fire frequency within the last decade supported the classification of much of western China as relatively fire-free; however, much of south-eastern China experiences more fire activity than predicted with our models, probably as a function of the extensive use of fire by people. Conclusions, While acknowledging there are many cultural, environmental and historical differences between the United States and China, our fire regime models based on climate data demonstrate potential historical fire regimes for China, and propose that large areas of China share historical fire,vegetation,climate complexes with the United States. [source]


The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa

JOURNAL OF APPLIED ECOLOGY, Issue 4 2006
NAVASHNI GOVENDER
Summary 1Fire is important for the maintenance and conservation of African savanna ecosystems. Despite the importance of fire intensity as a key element of the fire regime, it is seldom measured or included in fire records. 2We estimated fire intensity in the Kruger National Park, South Africa, by documenting fuel loads, fuel moisture contents, rates of fire spread and the heat yields of fuel in 956 experimental plot burns over 21 years. 3Individual fires were conducted in five different months (February, April, August, October and December) and at five different return intervals (1, 2, 3, 4 and 6 years). Estimated fire intensities ranged from 28 to 17 905 kW m,1. Fire season had a significant effect on fire intensity. Mean fire intensities were lowest in summer fires (1225 kW m,1), increased in autumn fires (1724 kW m,1) and highest in winter fires (2314 kW m,1); they were associated with a threefold difference between the mean moisture content of grass fuels in winter (28%) and summer (88%). 4Mean fuel loads increased with post-fire age, from 2964 kg ha,1 on annually burnt plots to 3972 kg ha,1 on biennial, triennial and quadrennial burnt plots (which did not differ significantly), but decreased to 2881 kg ha,1 on sexennial burnt plots. Fuel loads also increased with increasing rainfall over the previous 2 years. 5Mean fire intensities showed no significant differences between annual burns and burns in the biennial, triennial and quadrennial categories, despite lower fuel loads in annual burns, suggesting that seasonal fuel moisture effects overrode those of fuel load. Mean fire intensity in sexennial burns was less than half that of other burns (638 vs. 1969 kW m,1). 6We used relationships between season of fire, fuel loads and fire intensity in conjunction with the park's fire records to reconstruct broad fire intensity regimes. Changes in management from regular prescribed burning to ,natural' fires over the past four decades have resulted in a decrease in moderate-intensity fires and an increase in high-intensity fires. 7The highest fire intensities measured in our study (11 000 , > 17 500 kW m,1) were significantly higher than those previously reported for African savannas, but were similar to those in South American cerrado vegetation. The mean fire intensity for late dry season (winter) fires in our study was less than half that reported for late dry season fires in savannas in northern Australia. 8Synthesis and applications. Fire intensity has important effects on savanna vegetation, especially on the dynamics of the tree layer. Fire intensity varies with season (because of differences in fuel moisture) as well as with fuel load. Managers of African savannas can manipulate fire intensity by choosing the season of fire, and further by burning in years with higher or lower fuel loads. The basic relationships described here can also be used to enhance fire records, with a view to building a long-term data set for the ongoing assessment of the effectiveness of fire management. [source]


Relationships between expanding pinyon,juniper cover and topography in the central Great Basin, Nevada

JOURNAL OF BIOGEOGRAPHY, Issue 5 2008
Bethany A. Bradley
Abstract Aim, Increasing geographical range and density of conifers is a major form of land-cover change in the western United States, affecting fire frequency, biogeochemistry and possibly biodiversity. However, the extent and magnitude of the change are uncertain. This study aimed to quantify the relationship between changing conifer cover and topography. Location, The central Great Basin in the state of Nevada, USA. Methods, We used a series of Landsat Thematic Mapper satellite images from 1986, 1995 and 2005 to map change in pinyon,juniper woodlands (Pinus monophylla, Juniperus spp.) in the montane central Great Basin of Nevada. We derived fractional greenness for each year using spectral mixture analysis and identified all areas with an above average increase in greenness from 1986 to 1995 and 1995 to 2005. Results, Areas with high fractional greenness in 2005 were most likely to occur at elevations between 2200 and 2600 m a.s.l. Increases in fractional greenness between 1986 and 2005 were most likely to occur at elevations below 2000 m a.s.l. and on south-facing slopes. However, relationships between elevation and increasing greenness for individual mountain ranges varied considerably from the average trend. Fractional greenness values measured by Landsat suggest that the majority of pinyon,juniper woodlands have not reached their maximum potential tree cover. Main conclusions, Expansion of pinyon,juniper at low elevations and on south-facing slopes probably reflects increasing precipitation in the 20th century, higher water use efficiency caused by increasing atmospheric CO2 in the late 20th century and livestock grazing at the interface between shrubland and woodland. Identification of the spatial relationships between changing fractional greenness of pinyon,juniper woodland and topography can inform regional land management and improve projections of long-term ecosystem change. [source]


Forest progression modes in littoral Congo, Central Atlantic Africa

JOURNAL OF BIOGEOGRAPHY, Issue 9 2004
Charly Favier
Abstract Aim, To understand the persistence of a forest,savanna mosaic in places where rainfall data suggest that forest take-over should take place. To study the various modes of forest encroachment, and the role of human activities to hamper it. Location, Data were collected on several forest,savanna ecotones in the coastal region of the Republic of Congo. The sites were chosen to illustrate the differing principal modes of forest expansion, corresponding to different levels of anthropic pressure. Methods, The study sites were situated on five transects perpendicular to the ecotone (total sampled area: 1.7 ha) and 10 forest clumps in savanna (with diameters from 3 to 20 m). Along the transects botanical identification, diameter measurement and cartography were performed, while leaf area index was measured at a high resolution (every metre) along two of them. Collected data were analysed using a continuous quantification approach, which is much more useful than classical quadrat analysis. Time calibration of progression rates was performed using a simple model of the growth of the characteristic pioneer species, Aucoumea klaineana. Results, The two main different modes are reflected in different successional patterns. The edge diffusion is slow (its rate is evaluated to c. 1 m year,1) and is characterized by a progressive increase in large-diameter tree density and shade-tolerant tree density away from the ecotone. Conversely, savanna to forest phase transition by coalescence of clumps exhibits high tree density remnants distributed in established forest. The composition of these remnants is compatible with that of the forest clumps in savannas. Main conclusions, Three functional groups of pioneer trees are distinguished: some occupy the edge (edge pioneer), others establish clumps of forest in savanna (clump pioneers) and the longer-living A. klaineana ensures the transition to ,mature' forest. The two different observed patterns (linear edge progression and clump coalescence) can be understood with the use of a model of forest,savanna dynamics, ,FORSAT'. The two control parameters are the annual rainfall and the frequency of man-made fires in each savanna. In particular, an increase in the fire frequency can lead to a shift from the coalescence regime to the edge progression one. [source]


Native American impacts on fire regimes of the California coastal ranges

JOURNAL OF BIOGEOGRAPHY, Issue 3 2002
Jon E. Keeley
Aim Native American burning impacts on California shrubland dominated landscapes are evaluated relative to the natural lightning fire potential for affecting landscape patterns. Location Focus was on the coastal ranges of central and southern California. Methods Potential patterns of Indian burning were evaluated based upon historical documents, ethnographic accounts, archaeological records and consideration of contemporary land management tactics. Patterns of vegetation distribution in this region were evaluated relative to environmental factors and the resilience of the dominant shrub vegetation to different fire frequencies. Results Lightning fire frequency in this region is one of the lowest in North America and the density of pre-Columbian populations was one of the highest. Shrublands dominate the landscape throughout most of the region. These woody communities have weak resilience to high fire frequency and are readily displaced by annual grasses and forbs under high fire frequency. Intact shrublands provided limited resources for native Americans and thus there was ample motivation for using fire to degrade this vegetation to an open mosaic of shrubland/grassland, not unlike the agropastoral modification of ecologically related shrublands by Holocene peoples in the Mediterranean Basin. Alien-dominated grasslands currently cover approximately one-quarter of the landscape and less than 1% of these grasslands have a significant native grass presence. Ecological studies in the Californian coastal ranges have failed to uncover any clear soil or climate factors explaining grassland and shrubland distribution patterns. Main conclusions Coastal ranges of California were regions of high Indian density and low frequency of lightning fires. The natural vegetation dominants on this landscape are shrubland vegetation that often form dense impenetrable stands with limited resources for Native Americans. Natural fire frequencies are not high enough to maintain these landscapes in habitable mixtures of shrublands and grasslands but such landscape mosaics are readily produced with additional human subsidy of ignitions. It is hypothesized that a substantial fraction of the landscape was type converted from shrubland to grassland and much of the landscape that underwent such type conversion has either been maintained by Euro-American land management practices or resisted recolonization of native shrublands. It appears that these patterns are disturbance dependent and result from anthropogenic alteration of landscapes initiated by Native Americans and sustained and expanded upon by Euro-American settlers. [source]


Acacia species turnover in space and time in an African savanna

JOURNAL OF BIOGEOGRAPHY, Issue 1 2001
William J. Bond
Aim Patterns of species turnover along environmental gradients are better studied than their causes. Competitive interactions, or physiological tolerance are most often cited as determinants of turnover. Here we investigate differential tree species response to disturbance by fire and mammal browsing as causes of changing dominance of species within and among sites along an altitudinal gradient. Methods We documented the distribution of two Acacia species using maps and sample transects. We explored possible causes of species turnover by studying differences between the species in tolerance to grass competition using pot experiments, to browsers by observing patterns of shoot damage, and to fire by comparing the size structure of populations burnt at different frequencies and intensities. Results Acacia karroo woodlands were rare and occur at higher elevations than the much more common A. nilotica woodlands. Woodland composition seems set to change in future since the pattern of dominance was reversed in juvenile stages. A. karroo juveniles were very widespread and far more abundant than A. nilotica juveniles. A. karroo juveniles were most abundant in tall fire-prone grasslands and were rare on grazing lawns whereas A. nilotica showed the reverse pattern. In the pot experiments, growth of both species was suppressed by grasses but there were no significant differences in response between the two species. Juveniles of A. karroo were more heavily browsed than those of A. nilotica. However juveniles of A. nilotica were less tolerant of frequent intense burns than juvenile A. karroo. Main conclusions Disturbance gradients, from high fire frequency and low herbivore density at high altitudes, to lower fire frequency and higher herbivore density at low altitudes, are responsible for the shift in community structure along the spatial gradient. Differential responses to browsing and fire may also explain temporal turnover from A. nilotica in the past to A. karroo in the present. Changes in the area burnt annually, and in faunal composition, suggest a landscape-scale shift from grazing-dominated short-grass landscapes in the 1960s, favouring A. nilotica, to fire-dominated tall grasslands in the 1990s favouring A. karroo. We suggest that species turnover due to differential responses along disturbance gradients may be much more widespread than the current paucity of studies suggests. [source]


Fire regimes and forest changes in mid and upper montane forests of the southern Cascades, Lassen Volcanic National Park, California, U.S.A.

JOURNAL OF BIOGEOGRAPHY, Issue 1 2000
A. H. Taylor
Abstract Aim Spatial and temporal variation in fire regime parameters and forest structure were assessed. Location A 2630-ha area of mid- and upper montane forest in Lassen Volcanic National Park (LVNP). Methods Two hypotheses were tested concerned with fire-vegetation relationships in southern Cascades forests: (1) fire regime parameters (return interval, season of burn, fire size, rotation period) vary by forest dominant, elevation and slope aspect; and (2) fire exclusion since 1905 has caused forest structural and compositional changes in both mid- and upper montane forests. The implications of the study for national park management are also discussed. Results Fire regime parameters varied by forest compositional group and elevation in LVNP. Median composite and point fire return intervals were shorter in low elevation Jeffrey pine (Pinus jeffreyi) (JP) (4,6 years, 16 years) and Jeffrey pine,white fir (Abies concolor) (JP-WF) (5,10 years, 22 years) and longer in high elevation red fir (Abies magnifica), western white pine (Pinus monticola) (RF-WWP) forests (9,27 years, 70 years). Median fire return intervals were also shorter on east-facing (6,9 years, 16.3 years) and longer on south- (11 years, 32.5 years) and west-facing slopes (22,28 years, 54-years) in all forests and in each forest composition group. Spatial patterns in fire rotation length were the same as those for fire return intervals. More growing season fires also occurred in JP (33.1%) and JP-WF (17.5%) than in RF-WWP (1.1%) forests. A dramatic decline in fire frequency occurred in all forests after 1905. Conclusions Changes in forest structure and composition occurred in both mid- and upper montane forests due to twentieth-century fire exclusion. Forest density increased in JP and JP-WF forests and white fir increased in JP-WF forests and is now replacing Jeffrey pine. Forest density only increased in some RF-WWP stands, but not others. Resource managers restoring fire to these now denser forests need to burn larger areas if fire is going to play its pre-settlement role in montane forest dynamics. [source]


Changes in miombo woodland cover in and around Sengwa Wildlife Research Area, Zimbabwe, in relation to elephants and fire

AFRICAN JOURNAL OF ECOLOGY, Issue 3 2002
Isaac N. Mapaure
Abstract One of the consequences of impacts of elephants and fire on woodlands is a change in woody cover, which often results in major challenges for wildlife managers. Changes in miombo woodland cover in and around Sengwa Wildlife Research Area (SWRA) between 1958 and 1996 were quantified by analyzing aerial photographs. Woody cover in SWRA decreazed from 95.2% in 1958 to 68.2% in 1996, with a lowest mean of 62.9% in 1983. The annual absolute rate of woody cover change in SWRA increazed from ,1.1% per annum between 1958 and 1964 to a recovery of 1.6% per annum between 1993 and 1996, while the annual relative rate increazed from ,1.1% per annum between 1958 and 1964 to 3.3% per annum between 1993 and 1996. There was a strong negative correlation between elephant densities and woody cover in SWRA, suggesting that loss of woody cover was mainly due to elephants. Woodland recovery after 1983 was due to reductions in elephant populations through legal and illegal off-take and reductions in fire frequency. Surrounding areas experienced less woody cover losses than SWRA, mainly due to tree removal by locals whose densities increazed after the eradication of tsetse fly in the 1970s. Résumé Une des conséquences de l'impact des éléphants et des feux sur les forêts s'exprime par un changement du couvert ligneux qui pose souvent de fameux défis pour les gestionnaires de la faune. Les changements du couvert forestier à Miombo, qui sont survenus à l'intérieur et aux alentours de l'Aire de Recherche sur la Faune de Sengwa (SWRA) entre 1956 et 1996, ont été quantifiés grâce à l'analyse de photos aériennes. Le couvert forestier de la SWRA a diminué de 95.2% en 1958 à 68.2% en 1996, la moyenne la plus basse étant observée en 1983, avec 62.9%. Le taux annuel absolu de changement du couvert forestier dans la SWRA est passé de , 1.1% par an entre 1958 et 1964 à une restauration de 1.6% par an entre 1993 et 1996, tandis que le taux annuel relatif augmentait de , 1.1% par an entre 1958 et 1964 à 3.3% par an entre 1993 et 1996. Il existait une forte corrélation négative entre la densité des éléphants et le couvert forestier de la SWRA, ce qui laisse supposer que la perte de couvert forestier était due principalement aux éléphants. La restauration de la forêt après 1983 était due à des réductions des populations d'éléphants suite à des prélèvements, légaux ou non, et à une baisse de la fréquence des feux. Les zones adjacentes ont subi de moins fortes pertes du couvert forestier que la SWRA, et celles-ci étaient principalement dues à des coupes faites par les locaux dont la densité a augmenté suite à l'éradication de la mouche tsé-tsé dans les années 1970. [source]


Climatic oscillations in central Italy during the Last Glacial,Holocene transition: the record from Lake Accesa,

JOURNAL OF QUATERNARY SCIENCE, Issue 4 2006
Michel Magny
Abstract This paper presents an event stratigraphy based on data documenting the history of vegetation cover, lake-level changes and fire frequency, as well as volcanic eruptions, over the Last Glacial,early Holocene transition from a terrestrial sediment sequence recovered at Lake Accesa in Tuscany (north-central Italy). On the basis of an age,depth model inferred from 13 radiocarbon dates and six tephra horizons, the Oldest Dryas,Bølling warming event was dated to ca. 14,560,cal.,yr,BP and the Younger Dryas event to ca. 12,700,11,650,cal.,yr,BP. Four sub-millennial scale cooling phases were recognised from pollen data at ca. 14,300,14,200, 13,900,13,700, 13,400,13,100 and 11,350,11,150,cal.,yr,BP. The last three may be Mediterranean equivalents to the Older Dryas (GI-1d), Intra-Allerød (GI-1b) and Preboreal Oscillation (PBO) cooling events defined from the GRIP ice-core and indicate strong climatic linkages between the North Atlantic and Mediterranean areas during the last Termination. The first may correspond to Intra-Bølling cold oscillations registered by various palaeoclimatic records in the North Atlantic region. The lake-level record shows that the sub-millennial scale climatic oscillations which punctuated the last deglaciation were associated in central Italy with different successive patterns of hydrological changes from the Bølling warming to the 8.2,ka cold reversal. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Holocene solifluction, climate variation and fire in a subarctic landscape at Pippokangas, Finnish Lapland, based on radiocarbon-dated buried charcoal,

JOURNAL OF QUATERNARY SCIENCE, Issue 6 2005
John A. Matthews
Abstract A large number of radiocarbon dates from charcoal layers buried beneath stacked solifluction lobes at Pippokangas, in the northern boreal zone of Finnish Lapland, are used to reconstruct a Holocene history of solifluction. Although the site is surrounded by Scots pine forest, the solifluction lobes occur on the lower slopes of a kettle hole, the microclimate of which prevents the growth of trees. Samples from the upslope end of charcoal layers have enabled the recognition of four synchronous phases of solifluction lobe initiation: 7400,6700, 4200,3400, 2600,2100 and 1500,500,cal.,yr,BP. Rates of lobe advance are shown to be lobe-dependent and age-dependent: initially, average rates were commonly 0.14,0.19,cm yr,1, later falling to 0.02,0.07,cm,yr,1 or less as the lobes approached the bottom of the slope. The absence of charcoal prior to 8000,cal.,yr,BP, together with single IRSL and TL dates, indicate a relatively stable early Holocene landscape. The onset of solifluction around 7400,cal.,yr,BP. appears to have followed the immigration of pine around the site, which increased the frequency of forest fires. Phases of solifluction activity seem to have been triggered by millennial-scale variations in effective moisture (the climatic hypothesis), rather than episodic burning of the surface vegetation cover (the geoecological hypothesis), although climate may also have affected fire frequency and severity. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Redating the onset of burning at Lynch's Crater (North Queensland): implications for human settlement in Australia

JOURNAL OF QUATERNARY SCIENCE, Issue 8 2001
C. S. M. Turney
Abstract Lynch's Crater preserves a continuous, high-resolution record of environmental changes in north Queensland. This record suggests a marked increase in burning that appears to be independent of any known major climatic boundaries. This increase is accompanied, or closely followed, by the virtually complete replacement of rainforest by sclerophyll vegetation. The absence of any major climatic shift associated with this increase in fire frequency therefore has been interpreted as a result of early human impact in the area. The age for this increase in burning, on the basis of conventional radiocarbon dating, was previously thought to be approximately 38 000 14C yr BP, supporting the traditional model for human arrival in Australia at 40 000 14C yr BP Here we have applied a more rigorous pre-treatment and graphitisation procedure for radiocarbon dating samples from the Lynch's Crater sequence. These new dates suggest that the increase in fire frequency occurred at 45 000 14C yr BP, supporting the alternative view that human occupation of Australia occurred by at least 45 000,55 000 cal. yr BP. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Plant functional group responses to fire frequency and tree canopy cover gradients in oak savannas and woodlands

JOURNAL OF VEGETATION SCIENCE, Issue 1 2007
David W. Peterson
Abstract Questions: How do fire frequency, tree canopy cover, and their interactions influence cover of grasses, forbs and understorey woody plants in oak savannas and woodlands? Location: Minnesota, USA. Methods: We measured plant functional group cover and tree canopy cover on permanent plots within a long-term prescribed fire frequency experiment and used hierarchical linear modeling to assess plant functional group responses to fire frequency and tree canopy cover. Results: Understorey woody plant cover was highest in unburned woodlands and was negatively correlated with fire frequency. C4-grass cover was positively correlated with fire frequency and negatively correlated with tree canopy cover. C3-grass cover was highest at 40% tree canopy cover on unburned sites and at 60% tree canopy cover on frequently burned sites. Total forb cover was maximized at fire frequencies of 4,7 fires per decade, but was not significantly influenced by tree canopy cover. Cover of N-fixing forbs was highest in shaded areas, particularly on frequently burned sites, while combined cover of all other forbs was negatively correlated with tree canopy cover. Conclusions: The relative influences of fire frequency and tree canopy cover on understorey plant functional group cover vary among plant functional groups, but both play a significant role in structuring savanna and woodland understorey vegetation. When restoring degraded savannas, direct manipulation of overstorey tree canopy cover should be considered to rapidly reduce shading from fire-resistant overstorey trees. Prescribed fires can then be used to suppress understorey woody plants and promote establishment of light-demanding grasses and forbs. [source]