Home About us Contact | |||
Fire Events (fire + event)
Selected AbstractsPlanning to Reduce Risk: The Wildfire Management Overlay in Victoria, AustraliaGEOGRAPHICAL RESEARCH, Issue 2 2009RACHEL HUGHES Abstract In a world where climate change is a ,given', the concepts of vulnerability, resilience and risk are now pivotal in public policy debates in many countries. Within this context, planning controls are designed to facilitate safe, sustainable and prosperous communities. In line with March's (2007, 11) observation that ,one important "reason to plan" is the reduction of risk', Victoria's Wildfire Management Overlay (WMO) was developed with the aim of mitigating wildfire risk through the identification of high risk areas and ensuring that minimum fire protection measures are implemented. The need for such an Overlay is becoming increasingly apparent as climate change contributes to the growing frequency and intensity of bushfires in Australia. Empirical research has found that, by following WMO prescriptions, the risk of a dwelling igniting from direct flame or radiant heat generated in a one in 50-year fire event can be greatly minimised. Yet not all local Councils in Victoria have built the WMO into their land use planning processes and schemes. Barriers to adoption include: lack of political will, a distrust of ,over-regulation', lack of training and mentoring of planning staff, and potential conflicts with vegetation conservation objectives. [source] Factors Associated with Distress in Urban Residential Fire SurvivorsJOURNAL OF NURSING SCHOLARSHIP, Issue 1 2002Anne Keane Purpose: To identify factors associated with recovery in a sample of urban residential fire survivors. Design and Methods: 440 survivors of residential fires were interviewed at approximately 3, 6, and 13 months after the fire to measure psychological distress. A set of factors was identified that correlated with survivors' ability to recover from the fire event. Potential predictors of increased distress were identified. Hypotheses were that participants who were lower in socioeconomic status, who were minority members, who had less social support, who engaged in attributional thinking, and had greater concurrent life stresses would have greater psychological distress in response to a residential fire and would be less able to recover from the fire event. Findings: Distress after fire was high at 3 months and decreased for the majority of participants, although one-third of survivors had higher distress at 13 months than at 3 months. Loss of control and attributional variables had the strongest influence on psychological distress over time. Conclusions: The findings are consistent with stress-response tendencies expected after a stressful event. A set of predictor variables was identified to help clinicians target survivors at high risk for psychological distress after a residential fire. [source] How predictable are reptile responses to wildfire?OIKOS, Issue 7 2008David B. Lindenmayer Natural disturbances are key processes in the vast majority of ecosystems and a range of ecological theories have been developed in an attempt to predict biotic responses to them. However, empirical support for these theories has been inconsistent and considerable additional work remains to be done to better understand the response of biodiversity to natural disturbance. We tested predictions from the intermediate disturbance hypothesis and the habitat accommodation model of succession for reptile responses to fire history and a single major fire event. We focused our work on a broad range of vegetation types spanning sedgeland to temperate rainforest located within a national park in south-eastern Australia. We found no significant relationships between reptile species richness and the number of fires over the past 35 years, the time since the last fire, or the severity of a major fire in 2003. Thus, we found no strong evidence to support the intermediate disturbance hypothesis. A correspondence analysis of reptile assemblages revealed a gradient in species responses to fire history. However, we found limited evidence for an ordered succession of reptiles. Nor could the responses of individual species be readily predicted from life history attributes. Thus, our findings were generally not consistent with predictions from the habitat accommodation model of succession. A possible explanation for the absence of a predictable sequence of recovery following disturbance might be the rapidity of post-fire recovery of many components of native vegetation cover that were found to be important for reptiles (e.g. the extent of grass cover). This would have limited the time for early successional conditions to prevail and limited opportunities for species associated with such conditions. We found that most reptile species responses were much more strongly linked to vegetation type than fire variables, emphasizing a need to understand relationships with vegetation before being able to understand possible fire effects (if and where they exist). We found the disturbance concepts we examined were limited in their ability to accurately predict reptile responses to past fire history or the impacts of a single major fire in 2003. Practical management might be best guided not by disturbance theory, but by carefully setting objectives to meet conservation goals for particular individual species of reptiles. [source] The effect of a single burn event on the aquatic invertebrates in artesian springsAUSTRAL ECOLOGY, Issue 8 2009NICOLA THERESE MUNRO Abstract Fire can often occur in aquatic ecosystems, which may affect aquatic invertebrates. Despite the importance of aquatic invertebrates to ecosystem function, the effect of fire on these environments has been little studied. We studied the effects of fire on aquatic invertebrates in artesian springs in the arid zone of South Australia. Artesian springs are a unique and threatened ecosystem, containing several rare and endemic species. Evidence suggests these wetlands were routinely burnt by indigenous Aboriginal people before European settlement over 100 years ago. Recently, burning has been suggested as a reinstated management tool to control the dominant reed Phragmites australis. A reduction in the cover of the reed may benefit the threatened flora and fauna through enhancement of water flow. Three artesian springs were burnt and aquatic invertebrates sampled from the burnt and three unburnt springs. A single fire in late winter completely burnt the dominant vegetation, followed by recovery of Phragmites over the following 2 years. A single fire event did not deplete populations of endemic aquatic invertebrates in artesian springs, but probably did not substantially benefit these populations either. Isopods, amphipods, ostracods and three species of hydrobiid snail survived the fire event, and most had increased in number 1 month post fire but then returned to pre-burnt numbers by 1 year post fire. Morphospecies richness of all identified invertebrates increased over time in all springs, but did not differ appreciably between burnt and unburnt springs. If burning artesian springs is to be adopted as a management tool to suppress the growth of Phragmites australis, we conclude that the endemic aquatic invertebrates will survive a single burn event, without negative effect to their populations. [source] Fire play: ICCARUS,Intelligent command and control, acquisition and review using simulation,BRITISH JOURNAL OF EDUCATIONAL TECHNOLOGY, Issue 2 2008James Powell Is it possible to educate a fire officer to deal intelligently with the command and control of a major fire event he will never have experienced? The authors of this paper believe there is, and present here just one solution to this training challenge. It involves the development of an intelligent simulation based upon computer managed interactive media. The expertise and content underpinning this educational development was provided by the West Midlands Fire Service. Their brief for this training programme was unambiguous and to the point: 1Do not present the trainee with a model answer, because there are no generic fires. Each incident is novel, complex, and often ,wicked' in that it changes obstructively as it progresses. Thus firefighting demands that Commanders impose their individual intelligence on each problem to solve it. 2A suitable Educational Simulator should stand alone; operate in real time; emulate as nearly as possible the ,feel' of the fireground; present realistic fire progress; incorporate the vast majority of those resources normally present at a real incident; bombard the trainee with information from those sources; provide as few system-prompts as possible. 3There should also be an interrogable visual debrief which can be used after the exercise to give the trainees a firm understanding of the effects of their actions. This allows them to draw their own conclusions of their command effectiveness. Additionally, such a record of command and control will be an ideal initiator of tutorial discussion. 4The simulation should be realisable on a hardware/software platform of £10 000. 5The overriding importance is that the simulation should ,emulate as nearly as possible the feelings and stresses of the command role'. [source] Long-term fire frequency variability in the eastern Canadian boreal forest: the influences of climate vs. local factorsGLOBAL CHANGE BIOLOGY, Issue 5 2009ADAM A. ALI Abstract The influence of climatic and local nonclimatic factors on the fire regime of the eastern Canadian boreal forest over the last 8000 years is investigated by examining charred particles preserved in four lacustrine deposits. Herein, we compare the distribution of fire-free intervals (FFIs) and the synchronicity of fire events among sites, using Ripley's K -function to determine the extent of the role of local-scale vs. large-scale processes with respect to fire control. Between 8000 and 5800 cal. bp (calibrated years before present) the climatic and ecological conditions were less conducive to fire events than after this date. After 5800 cal. bp, the number of fires per 1000 years (fire frequency) progressively increased, reaching a maximum ca. 3400 cal. bp. There was a sharp decrease in fire frequency during the last 800 years. Between 8000 and 4000 cal. bp, comparable FFIs and synchronous fire episodes were determined for the study sites. During this period, the fire frequency was predominantly controlled by climate. After 4000 cal. bp, two sites displayed independent fire histories (different FFI distributions or asynchronous fire events), underlining the important influence of local factors, including short-term fuel wetness, characteristics of the watershed and landscape connectivity, in determining fire occurrence. We conclude that climatic changes occurred during the last 4000 years that induced a rise in the water table; this may explain the high spatial heterogeneity in fire history. Current and projected global climatic changes may cause similar spatial variability in fire frequency. [source] Seasonal patterns in biomass smoke pollution and the mid 20th-century transition from Aboriginal to European fire management in northern AustraliaGLOBAL ECOLOGY, Issue 2 2007David M. J. S. Bowman ABSTRACT Aim, Globally, most landscape burning occurs in the tropical savanna biome, where fire is a characteristic of the annual dry season. In northern Australia there is uncertainty about how the frequency and timing of dry season fires have changed in the transition from Aboriginal to European fire management. Location, In the tropical eucalypt savannas that surround the city of Darwin in the northwest of the Northern Territory of Australia. Methods, Our study had three parts: (1) we developed a predictive statistical model of mean mass (µg) of particulates 10 µm or less per cubic metre of air (PM10) using visibility and other meteorological data in Darwin during the dry seasons of 2000 and 2004; (2) we tested the model and its application to the broader air shed by (a) matching the prediction of this model to PM10 measurements made in Darwin in 2005, (b) matching the predictions to independent measurements at two locations 20 km to the north and south of Darwin and (c) matching peaks in PM10 to known major fire events in the region (2000,01 dry seasons); and (3) we used the model to explore changes in air quality over the last 50 years, a period that spans the transition from Aboriginal to European land management. Results, We demonstrated that visibility data can be used reliably as a proxy for biomass burning across the largely uncleared tropical savannas inland of Darwin. Validations using independent measurements demonstrated that our predictive model was robust, and geographically and temporally representative of the regional airshed. We used the model to hindcast and found that seasonal air quality has changed since 1955, with a trend to increasing PM10 concentrations in the early dry season. Main conclusions, The results suggest that the transition from Aboriginal to European land management has been associated with an increase in fire activity in the early months of the dry season. [source] Modelling and simulation of fires in vehicle tunnelsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 3 2004I. Gasser Abstract Applying a low-Mach asymptotic for the compressible Navier,Stokes equations, we derive a new fluid dynamics model,which should be capable to model large temperature differences in combination with the low-Mach number limit. The model is used to simulate fires in vehicle tunnels, where the standard Boussinesq-approximation for the incompressible Navier,Stokes seems to be inappropriate due to the high temperatures developing in the tunnel. The model is implemented using a modified finite-difference approach for the incompressible Navier,Stokes equations and tested in some realistic fire events. Copyright © 2004 John Wiley & Sons, Ltd. [source] A Statistical Sediment Yield Prediction Model Incorporating the Effect of Fires and Subsequent Storm Events,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 3 2008Jang Hyuk Pak Abstract:, Alluvial fans are continuously being developed for residential, industrial, commercial, and agricultural uses in southern California. Development and alteration of alluvial fans need to consider the possibility of mud and debris flows from upstream mountain watersheds affected by fires. Accurate prediction of sediment yield (or hyper-concentrated sediment yield) is essential for the design, operation, and maintenance of debris basins to safeguard properly the general populace. This paper presents a model for the prediction of sediment yields that result from a combination of fire and subsequent storm events. The watersheds used in this analysis are located in the foothills of the San Gabriel Mountains in southern California. A multiple regression analysis is first utilized to establish a fundamental statistical relationship for sediment yield as a function of relief ratio, drainage area, maximum 1-h rainfall intensity and fire factor using 45 years of data (1938-1983). In addition, a method for multi-sequence sediment yield prediction under fire conditions was developed and calibrated using 17 years of sediment yield, fire, and precipitation data for the period 1984-2000. After calibration, this model was verified by applying it to provide a prediction of the sediment yields for the 2001-2002 fire events in southern California. The findings indicate a strong correlation between the estimated and measured sediment yields. The proposed method for sequence sediment yield prediction following fire events can be a useful tool to schedule cleanout operations for debris basins and to develop an emergency response strategy for the southern California region where plentiful sediment supplies exist and frequent fires occur. [source] Quantifying patterns and controls of mire vegetation succession in a southern boreal bog in Finland using partial ordinationsJOURNAL OF VEGETATION SCIENCE, Issue 6 2007E.-S. Tuittila Abstract Question: How do we distinguish between concurrent allogenic and autogenic forcings behind changing patterns in plant community structures during mire development? Location: Lakkasuo raised bog, southern Finland. Methods: Two radiometrically dated peat profiles were studied using high resolution plant macrofossil analysis. A combination of partial direct and indirect gradient analyses (CCA and DCA) was applied to quantify the role of different drivers of vegetation changes. Results: Autogenic hydroseral succession explained 16% of the compositional variation in the vegetation. Disturbance successions initiated by fire explained 15% of the variation in the hummock, but only 9% in the wetter lawn. The early post-disturbance successional stages were characterized by Eriophorum vaginatum. After partialling out the effects of peat depth and time since fire, a moisture gradient explained 29% of variation in the hummock core and 26% in the lawn. The analyses also indicated alternation between species with a similar niche. This interaction gradient explained 26% and 31% of the compositional variation in the hummock and lawn, respectively. The similar order of species replacement from both cores supported the existence of general directional succession in mire vegetation, both during the mire development and after fire events. The autogenic succession was slow and gradual while the disturbance successions were episodic and fast. Conclusion: Our results support the paradigm of the complex nature of mire vegetation dynamics where several interlinked agents have simultaneous effects. The approach of combining partial ordinations developed here appeared to be a useful tool to assess the role of different environmental factors in controlling the vegetation succession. [source] An asymptotic-induced one-dimensional model to describe fires in tunnels II: the stationary problemMATHEMATICAL METHODS IN THE APPLIED SCIENCES, Issue 15 2003Ingenuin Gasser Abstract We study stationary solutions of a one-dimensional low-Mach-number model derived in Gasser and Struckmeier (Math. Meth. Appl. Sci. 2002; 25(14): 1231) to describe fire events in long tunnels. The existence of solutions of the corresponding stationary model is shown to be equivalent to the existence of solutions of an algebraic problem. Multiple solutions are shown to be possible. The relation between different formulations of the problem is analysed. Weak and special distributional solutions are considered. Finally, numerical examples of realistic tunnel data with single and multiple solutions of the stationary problem are given. Copyright © 2003 John Wiley & Sons, Ltd. [source] An asymptotic-induced one-dimensional model to describe fires in tunnelsMATHEMATICAL METHODS IN THE APPLIED SCIENCES, Issue 14 2002Ingenuin Gasser We derive a simple one-dimensional model for the description of fire events in long vehicle tunnels, which is based on appropriate low-Mach number asymptotics as well as on averaging procedure along the cross-section of a tunnel. Turbulent effects are modelled using a phenomenological model. Numerical simulations based on a standard finite-difference method show the ability of the new model to describe fires in tunnels at least qualitatively. Copyright © 2002 John Wiley & Sons, Ltd. [source] Two proxy records revealing the late Holocene fire history at a site on the central coast of New South Wales, AustraliaAUSTRAL ECOLOGY, Issue 6 2006SCOTT. Abstract: The local fire history of a coastal swamp catchment in New South Wales was reconstructed using two proxy records of fire: sedimentary macroscopic charcoal and fire-scar analyses of Xanthorrhoea johnsonii. The charcoal analysis provided a record of fire activity spanning the last 2800 years, while the Xanthorrhoea record covered the last approx. 300 years. The ability of each method to accurately record fire events was verified by cross referencing against the recent (post 1968) historic fire record. Fire history was then extrapolated beyond the historic record, to reveal an unprecedented level of fire activity in the last 35 years, which coincides with increased human activity in the area. In the prehistoric period charcoal and fire scars are comparatively rare, which is most parsimoniously ascribed to little fire activity, but perhaps represents skilful fire manipulation, as is often attributed to Aboriginal people. The comparatively minor fluctuations in macroscopic charcoal during the prehistoric period were approximately coeval with previous evidence of late Holocene environmental change in south-eastern Australia, suggesting that fire frequency at the site responded to climatic variability. The longer temporal perspective of this palaeoenvironmental approach provides information for the contemporary management of fire in this conservation reserve. [source] Resprouting of saplings following a tropical rainforest fire in north-east Queensland, AustraliaAUSTRAL ECOLOGY, Issue 8 2005MATTHEW J. MARRINAN Abstract In 2002, fire burnt areas of Mesophyll- and Notophyll Vine Forest in the Smithfield Conservation Park near Cairns, Australia. We assessed the ability of rainforest plant species to persist through fire via resprouting. Natural rates of mortality and resprouting in unburnt areas were assessed for all saplings (stems < 2 m) via 13, 2 × 50 m belt transects, and compared to estimates of mortality and resprouting in 26 transects in burnt areas. We also tested the resprouting ability per-individual stem of each species against all other stems with which it co-occurred. Totals of 1242 stems (138 species) were sampled in burnt transects and 503 stems (95 species) in unburnt transects (total number of unique species = 169). There was no difference in the number of stems existing prior to the fire in burnt and unburnt areas when expressed on a per-sample area basis. Resprouting from basal shoots and root suckers was significantly greater in burnt than in unburnt areas, but rates of stem sprouting were not different. In burnt areas 72 species were tested for resprouting ability and most (65/72) resprouted at similar rates. All species analysed contained individuals that resprouted. The resprouting response of five species was significantly lower, and in two species was significantly higher. For these species especially, fire may act as a mechanism altering relative abundances. The fire coincided with an extreme El Niño event. Current predictions indicate El Niño conditions may become increasingly common, suggesting fire events within rainforest could become more frequent. Resprouting as a general phenomenon of rainforest species, and differential resprouting ability between species should therefore be an important consideration in assessing the potential path of vegetation change in rainforests after fire. [source] Spatial ecology of a threatened python (Morelia spilota imbricata) and the effects of anthropogenic habitat changeAUSTRAL ECOLOGY, Issue 3 2005D. PEARSON Abstract Large predators play important ecological roles, but often are sensitive to habitat changes and thus are early casualties of habitat perturbation. Pythons are among the largest predators in many Australian environments, and hence warrant conservation-orientated research. Carpet pythons (Morelia spilota imbricata) have declined across much of south-western Australia presumably because of habitat clearance and degradation. Information on habitat use, home range sizes and movements is needed to plan for the conservation of this important predator. We studied pythons at two study sites (Garden Island and Dryandra Woodland) with markedly different climates, habitat types and disturbance histories. We surgically implanted radio-transmitters in 91 pythons and tracked them for periods of 1 month to 4 years. Dryandra pythons remained inactive inside tree hollows during cooler months (May,September), whereas some (especially small) pythons on Garden Island continued to move and feed. Overall weekly displacements (mean = 100,150 m) were similar at the two study sites and among sex/age classes, except that reproductive females were sedentary during summer while they were incubating eggs. Home ranges averaged 15,20 ha. Adult male pythons had larger home ranges than adult females at Dryandra, but not at Garden Island. Radio-tracked snakes at Dryandra exhibited high site fidelity, returning to previously occupied logs after long absences and reusing tree hollows for winter shelter. Many of the logs used by snakes had been felled during plantation establishment >70 years ago, with little subsequent regeneration of source trees. In contrast, Garden Island snakes usually sheltered under dense shrubs. Habitat usage was similar among different sex/age classes of snakes at each site, except that juvenile pythons were more arboreal than adults. Although carpet pythons demonstrate great flexibility in habitat use, certain habitat elements appear critical for the persistence of viable populations. Fire plays a central role in this process, albeit in complex ways. For example, low-intensity fires reduce the availability of hollow logs on the ground at Dryandra and fail to regenerate shrub thickets required by prey species. Paradoxically, high-intensity fires stimulate shrub thickets and fell trees creating new logs , but might also threaten overwinter trees. Thus, the impact of disturbances (such as wildfires) on the viability of python populations will be mediated in complex ways by alteration to important microhabitats such as vegetation cover or log availability. At Dryandra, landscape management should include occasional fire events to generate new logs as well as shrub thickets used by prey. Strategic burning may also be required at Garden Island to regenerate some vegetation communities. [source] Soil Charcoal in Old-Growth Rain Forests from Sea Level to the Continental DivideBIOTROPICA, Issue 6 2007Beyhan Titiz ABSTRACT Soil charcoal is an indicator of Holocene fires as well as a palaeoecological signature of pre-Colombian land use in Neotropical rain forests. To document rain forest fire history, we examined soil charcoal patterns in continuous old-growth forests along an elevational transect from sea level to the continental divide on the Atlantic slope of Costa Rica. At 10 elevations we sampled 1-ha plots, using 16 cores/ha to collect 1.5-m deep soil samples. We found charcoal in soils at every elevation, with total dry mass ranging from 3.18 g/m2 at 2000-m elevation to as much as 102.7 g/m2 at 300 m. Soil charcoal is most abundant at the wettest lowland sites (60,500 m) and less at montane elevations (> 1000 m) where there is less rainfall. Between 30- and 90-cm soil depth, soil charcoal is present consistently and every 1-ha plot has charcoal evidence for multiple fire events. Radiocarbon dates range from 23,240 YBP at 1750-m elevation to 140 YBP at 2600 m. Interestingly, none of the charcoal samples from 2600 m are older than 170 yr, which suggests that forests near the continental divide are relatively young replacement stands that have re-established since the most recent localized volcanic eruption on Volcán Barva. We propose that these old-growth forests have been disturbed infrequently but multiple times as a consequence of anthropogenic and natural fires. RESUMEN El carbón es un indicador de los fuegos Holocenos así como una huella paleoecológica del uso de las tierras precolombinas en bosques neotropicales. Para documentar la historia de fuegos en los bosques, examinamos modelos de carbón en la tierra en bosques primarios continuos a lo largo de un transecto en altitud en zonas de vida forestal desde el nivel del mar hasta la División Continental en la vertiente atlántica de Costa Rica. En diez elevaciones tomamos muestras de parcelas de una hectárea, donde se usaron dieciséis cilíndricas de acero por hectárea para recoger muestras de suelo a 1.5 metros de profundidad. Descubrimos carbón en suelos en cada elevación, con un rango de masa seca total desde los 3.18 g/m2 a 2000 metros de altura hasta un máximo de 102.7 g/m2 a 300 metros de altura. El carbón abunda más en las zonas más lluviosas (60,500 metros) y menos en elevaciones montañosas (>1000 metros) donde hay menos precipitación. Entre los 30 a los 90 centímetros de profundidad en la tierra, el carbón está presente consistentemente y cada parcela de una hectárea tiene evidencia de carbón de incendios múltiples. Fechas de 14C van desde los 23,240 años a.P. a 1750 metros de elevación hasta los 140 años a.P. a 2600 metros. De modo interesante, ninguna de las muestras de carbón a partir de los 2600 metros de altura tiene más de 170 años, lo que sugiere que los bosques cerca de la División Continental son árboles relativamente jóvenes que se han reestablecido después de las erupciones volcánicas confinadas del Volcán Barva. Pensamos que estos bosques primarios han sido disturbados en muchas ocasiones pero en un largo periodo de tiempo como consecuencia de fuegos antropogénicos y naturales. [source] |