Home About us Contact | |||
Final Irradiation (final + irradiation)
Selected AbstractsEffect of freeze-drying and gamma irradiation on the mechanical properties of human cancellous boneJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 3 2000O. Cornu Freeze-drying and gamma irradiation are commonly used for preservation and sterilization in bone banking. The cumulative effects of preparation and sterilization of cancellous graft material have not been adequately studied, despite the clinical importance of graft material in orthopaedic surgery. Taking benefit from the symmetry of the left and right femoral heads, the influence of lipid extraction followed by freeze-drying of a femoral head and a final 25-kGy gamma irradiation was determined, with the nonirradiated, nonprocessed counterpart as the control. Five hundred and fifty-six compression tests were performed (137 pairs for the first treatment and 141 pairs for the second). Mechanical tests were performed after 30 minutes of rehydration in saline solution. Freeze-dried femoral heads that had undergone lipid extraction experienced reductions of 18.9 and 20.2% in ultimate strength and stiffness, respectively. Unexpectedly, the work to failure did not decrease after this treatment. The addition of gamma irradiation resulted in a mean drop of 42.5% in ultimate strength. Stiffness of the processed bone was not modified by the final irradiation, with an insignificant drop of 24%, whereas work to failure was reduced by a mean of 71.8%. Freeze-dried bone was a bit less strong and stiff than its frozen control. Its work to failure was not reduced, due to more deformation in the nonlinear domain, and it was not brittle after 30 minutes of rehydration. Final irradiation of the freeze-dried bone weakened its mechanical resistance, namely by the loss of its capacity to absorb the energy (in a plastic way) and a subsequent greater brittleness. [source] Decrease in Langerhans Cells and Increase in Lymph Node Dendritic Cells Following Chronic Exposure of Mice to Suberythemal Doses of Solar Simulated RadiationPHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 5 2005Pauline McLoone ABSTRACT Exposure of certain strains of mice to ultraviolet radiation (UVR) causes suppression of some innate and adaptive immune responses. One such consequence of acute UVB exposure is a reduction in the number of Langerhans cells (LC) in the epidermis and an increase in dendritic cells (DC) in lymph nodes draining the irradiated skin sites. Exposure to chronic UVB irradiation also has effects on the immune system, but it is unknown what effects are caused by repeated doses of solar simulated radiation (SSR). Consequently, the main aims of the present study were to determine whether repeated exposure to low doses of SSR would lead to similar changes in these cell populations and whether chronic doses of SSR activate a protective photoadaptation mechanism. Groups of C3H/HeN mice were irradiated daily with 3.7 J/cm2 SSR from Cleo Natural lamps for 2, 10, 20, 30 or 60 days. Further groups of mice received an additional dose of 7.4 J/cm2 SSR on days 2, 10, 30 or 60 to test for photoadaptation. The numbers of LC in the epidermis and DC in the lymph nodes draining irradiated skin sites were counted 24 h after the final irradiation. With the exception of mice irradiated for only 2 days, LC were significantly reduced throughout the chronic irradiation protocol, and no recovery occurred. DC numbers were significantly increased in the draining lymph nodes of mice irradiated for 20 days and 60 days. [source] Ergocalciferol promotes in vivo differentiation of keratinocytes and reduces photodamage caused by ultraviolet irradiation in hairless micePHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE, Issue 5 2004Hiroaki Mitani Background: Ergocalciferol (VD2) is usually administered orally and it is metabolized to produce its biologically active metabolites in the liver and kidney. Active vitamin D is a well-known potent regulator of cell growth and differentiation. Purpose: Active vitamin D such as 1,25-dihydroxyvitamin D3 (1,,25(OH)2D3) prevents photodamage, including wrinkles and morphologic alterations. However, its clinical and cosmetic use is limited because of its potent, associated effect on calcium metabolism. We examined the efficacy of vitamin D analogues with few adverse effects for preventing skin photodamage. Method: Topical application of VD2 to hairless mouse dorsal skin, and exposure to solar-simulating ultraviolet (UV) radiation at a dose of 10.8 J/cm2 (UVA) were performed for 15 weeks, five times a week on weekdays. At the end of the final irradiation, histological and analytical studies were performed. Results: Topical application of VD2 significantly prevented wrinkle formation and abnormal accumulation of extracellular matrix components. In addition, VD2 suppressed excessive secretion of IL-6 induced by UV irradiation in cultured human normal keratinocytes, in a dose-dependent manner. Conclusion: VD2 promoted keratinocytes differentiation in the epidermis and showed diverse physiological effects, the same as the active form of VD3. The results suggested that the suppression of skin photodamage involved the promotion of keratinocytes differentiation and suppression of IL-6 secretion induced by exposure to UV. Topical application of VD2 may become an effective means to suppress solar UV-induced human skin damage. [source] |