Final Composition (final + composition)

Distribution by Scientific Domains


Selected Abstracts


How does surrounding vegetation affect the course of succession: A five-year container experiment

JOURNAL OF VEGETATION SCIENCE, Issue 4 2009
ch Lanta
Abstract Question: How does location and time of insertion affect the course of succession in experimental containers? Location: Bene,ov nad Lipou, ,eskomoravská vrchovina (Czech-Moravian uplands), Czech Republic Methods: We designed a 5-year container experiment in which plant succession started from scratch. Soil conditions were constant and all containers were filled with homogeneous substrate containing no propagules. We placed the containers in two contrasting habitats (meadow and floodplain) under identical climatic conditions but differing in surrounding vegetations and hence seed input. New containers were installed (and hence succession started) in two subsequent years, twice in each year (spring and autumn). We assume that the individual dates would lead to differences in propagule input and weather conditions. Results: Although both year and season of succession initiation considerably affected the initial species composition, we observed a pronounced convergence within the set of containers located in each habitat. However, the similarity of containers initiated at the same time but located in different habitats decreased over the course of succession. Final composition of the meadow and floodplain containers was therefore mostly determined by permanent seed input from their nearby neighborhood. Conclusions: This study demonstrated that propagule availability is an important determinant of the course of succession, and that differential seed input leads to different pathways of succession, even when all other environmental conditions are equal. [source]


Photoluminescence and TEM characterization of (AlyGa1,y)1,xInxP layers grown on graded buffers

PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 4 2007
J. Novak
Abstract Composition, crystallographic quality and low temperature photoluminescence of AlGaInP quaternary layers were studied. These layers were grown on the InGaP/GaP graded buffers by metalorganic vapour phase epitaxy. Final composition of the graded buffer top layer was xIn = 0.24. Incorporation of the small amount Al into quaternary led to a substantial improvement of the surface morpohology and crystallographic quality observed in cross-sectional TEM view. Incorporation of higher amount of Al (above 1%) led to the increase of lattice mismatch, decrease of In content in the alloy and to the indirect band gap. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Solvent Effects on the Architecture and Performance of Polymer White-Light-Emitting Diodes with Conjugated Oligoelectrolyte Electron-Transport Layers

ADVANCED MATERIALS, Issue 5 2009
Yunhua Xu
Polymer-based white-light-emitting diodes are fabricated using conjugated oligoelec trolytes as effective electron-injection layers. However, the choice of solvent used to deposit the conjugated oligoelectrolyte bears a strong influence on the final composition of the emissive layer. Inclusion of water decreases the contact with hydrophobic underlying coatings, and minimizes the extraction of one of the molecular components required for function. [source]


Mass Balances in Porous Foods Impregnation

JOURNAL OF FOOD SCIENCE, Issue 9 2001
V. Roa
ABSTRACT: A simple model based on mass balance equations is proposed for prediction of the final mass and composition of products subjected to vacuum impregnation. It was applied to some tropical fruits in a fruit-sucrose solution system. The phenomenon can be described in terms of volumetric fraction of impregnating solution as the basic modeling parameter, instead of effective porosity. To use the equations of the model, only routine laboratory equipment and simple experiments are required. Prediction of the final weight of impregnated fruit was accomplished with an average absolute error of 2 to 3%, while in final composition of the fruit (total solids), it was 5.7 %. [source]


Random Computer Generation of 3D Molecular Structures: Theoretical and Statistical Analysis

MACROMOLECULAR THEORY AND SIMULATIONS, Issue 2 2006
Alain Porquet
Abstract Summary: A computer program has been developed to generate three-dimensional molecular structures randomly from a given collection of elementary chemical functional groups: the so-called fragment database. The gradual assembly of the various fragments present in the database is performed according to a "self-generation algorithm" (SGA). The latter is based on the covalent binding, step by step, between the unoccupied electronic valencies associated with the fragments of the database, and those of the growing molecular structure. When the number of electronic valencies of the molecular structure is zero, the growth process for this particular molecule is completed. It is shown that SGA is able to reproduce the asymmetric mass distributions of some natural colloids, like humic substances. In this article, particular attention is given to the analysis of the relationship existing between the fragment composition of the database and that of the collection of molecules generated. Mathematical expressions are derived and discussed, to understand the relationship between the proportions of the different types of fragments and the final composition of the generated molecular ensembles. For that purpose, a "pathway" formalism is proposed to describe exhaustively the whole set of generated molecules by specifying the distribution function of all of the fragments therein integrated. A statistical analysis that satisfactorily reproduces the predictions of the pathway model is extensively discussed. Example of a three-dimensional structure obtained with the "self-generation algorithm" (SGA). [source]


Maurice Ravel and right-hemisphere musical creativity: influence of disease on his last musical works?

EUROPEAN JOURNAL OF NEUROLOGY, Issue 1 2002
L. Amaducci
The problem of finding correspondence between a particular neuronal organization and a specific function of the human brain remains a central question of neuroscience. It is sometimes thought that language and music are two sides of the same intellectual coin, but research on brain-damaged patients has shown that the loss of verbal functions (aphasia) is not necessarily accompanied by a loss of musical abilities (amusia). Amusia without aphasia has also been described. This double dissociation indicates functional autonomy in these mental processes. Yet verbal and musical impairments often occur together. The global picture that emerges from studies of music and its neural substrate is by no means clear and much depends on which subjects and which aspect of musical abilities are investigated. An illustration of these concepts is provided by the case of the French composer Maurice Ravel, who suffered from a progressive cerebral disease of uncertain aetiology, with prominent involvement of the left hemisphere. As a result, Ravel experienced aphasia and apraxia and became unable to compose. The available facts favour a clinical diagnosis of primary progressive aphasia (PPA), with the possibility of an overlap with corticobasal degeneration (CBD). In view of Ravel's clinical history, we propose that two of his final compositions, the Bolero and the Concerto for the Left Hand, include certain patterns characteristic of right-hemisphere musical abilities and may show the influence of disease on the creative process. [source]