Final Biomass (final + biomass)

Distribution by Scientific Domains


Selected Abstracts


Effect of Feeding Frequency, Water Temperature, and Stocking Density on the Growth of Tiger Puffer, Takifugu rubripes

JOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 1 2006
Kotaro Kikuchi
Effects of daily feeding frequency, water temperature, and stocking density on the growth of tiger puffer, Takifugu rubripes, fry were examined to develop effective techniques to produce tiger puffer in a closed recirculation system. Fish of 4, 14, and 180 g in initial body weight were fed commercial pellet diets once to five times a day to apparent satiation each by hand for 8 or 12 wk at 20 C. Daily feeding frequency did not affect the growth of 14- and 180-g-size fish. However, the daily feed consumption and weight gain of the 4-g-size fish fed three and five times daily were significantly higher than those of fish fed once daily (P < 0.05). Fish of 4 and 50 g in initial body weight were reared with the pellet diet at 15,30 C for 8 wk. The weight gain of fish increased with increasing water temperature up to 25 C and decreased drastically at 30 C for both sizes. Similar trends were observed for feed efficiency, although 4-g fish had highest efficiency at 20 C. Effects of stocking density on growth were examined with fish of 8, 13, and 100 g in initial body weight. Fish were reared with the pellet diet for 8 or 16 wk at 20 C. Fish were placed in floating net cages in the culture tank, and the stocking density was determined based on the total weight of fish and volume of the net cage. Fish of 8 g in body weight grew up to 35,36 g during the 8-wk rearing period independent of the stocking density of 8, 15, and 31 kg/m3 at the end of rearing. Final biomass per cage reached 32, 60, and 115 kg/m3 for 13-g-size fish, and 10, 18, and 35 kg/m3 for 100-g-size fish, and the growth of the fish tended to decrease with increasing stocking density for both sizes. [source]


Where temperate meets tropical: multi-factorial effects of elevated CO2, nitrogen enrichment, and competition on a mangrove-salt marsh community

GLOBAL CHANGE BIOLOGY, Issue 5 2008
KAREN L. McKEE
Abstract Our understanding of how elevated CO2 and interactions with other factors will affect coastal plant communities is limited. Such information is particularly needed for transitional communities where major vegetation types converge. Tropical mangroves (Avicennia germinans) intergrade with temperate salt marshes (Spartina alterniflora) in the northern Gulf of Mexico, and this transitional community represents an important experimental system to test hypotheses about global change impacts on critical ecosystems. We examined the responses of A. germinans (C3) and S. alterniflora (C4), grown in monoculture and mixture in mesocosms for 18 months, to interactive effects of atmospheric CO2 and pore water nitrogen (N) concentrations typical of these marshes. A. germinans, grown without competition from S. alterniflora, increased final biomass (35%) under elevated CO2 treatment and higher N availability. Growth of A. germinans was severely curtailed, however, when grown in mixture with S. alterniflora, and enrichment with CO2 and N could not reverse this growth suppression. A field experiment using mangrove seedlings produced by CO2 - and N-enriched trees confirmed that competition from S. alterniflora suppressed growth under natural conditions and further showed that herbivory greatly reduced survival of all seedlings. Thus, mangroves will not supplant marsh vegetation due to elevated CO2 alone, but instead will require changes in climate, environmental stress, or disturbance to alter the competitive balance between these species. However, where competition and herbivory are low, elevated CO2 may accelerate mangrove transition from the seedling to sapling stage and also increase above- and belowground production of existing mangrove stands, particularly in combination with higher soil N. [source]


Effects of fire severity in a north Patagonian subalpine forest

JOURNAL OF VEGETATION SCIENCE, Issue 1 2005
Thomas Kitzberger
Abstract. Question: What is the relative importance of fire-induced canopy mortality, soil burning and post-fire herbivory on tree seedling performance? Location: Subalpine Nothofagus pumilio forests at Challhuaco valley (41°13'S, 71°19'W), Nahuel Huapi National Park, Argentina. Methods: We fenced and transplanted soils of three burning severities along a fire severity gradient produced by a fire in 1996. Over two growing seasons we monitored soil water, direct incoming solar radiation, seedling survival, final seedling total biomass and root/shoot ratio. Additionally, we assessed severity-related changes in soil properties. Results: Incoming radiation (an indicator of the amount of canopy cover left by the fire) was the primary factor influencing spring and summer top soil water availability, first and second-year seedling survival and seedling growth. While seedling survival and soil water content were negatively affected by increased radiation, seedling final biomass was highest in very open microsites. Burned soils showed lower water holding capacity and soil carbon; however these changes did not affect topsoil water, and, contrary to expectation, there was a slight tendency toward higher seedling survival on more heavily burned soils. Herbivory significantly reduced seedling survival, but only under high-radiation conditions. While the effect of radiation on final seedling biomass was not affected by herbivory, R/S ratios were significantly reduced by herbivory in high radiation micro sites. Conclusions: Despite inducing faster aerial growth, increased radiation and herbivory in severely burned sites may effectively prevent post-fire regeneration in north Patagonian subalpine forest where seed sources are not limiting. [source]


Shoot herbivory on the invasive plant, Centaurea maculosa, does not reduce its competitive effects on conspecifics and natives

OIKOS, Issue 3 2006
Beth A. Newingham
Herbivory can have negative, positive, or no effect on plants. However, insect biological control assumes that herbivory will negatively affect the weed and release natives from competition. Centaurea maculosa, an invader in North America, is tolerant to herbivory, and under some conditions, herbivory may increase its competitive effects on natives. Therefore, we investigated two hypotheses: 1) herbivory stimulates compensatory growth by C. maculosa, which increases its competitive effects, and 2) herbivory stimulates the allelopathic effect of C. maculosa. In the greenhouse, Trichoplusia ni shoot herbivory reduced C. maculosa biomass when shoot damage exceeded 40% of the total original leaf area. Conspecific neighbors had no effect on C. maculosa biomass, and the presence of the natives Festuca idahoensis and F. scabrella had a positive effect on C. maculosa. Neighbors did not alter the effects of shoot herbivory. More importantly, even intense shoot herbivory on C. maculosa did not benefit neighboring plants. In a field experiment, clipping 50% of C. maculosa aboveground biomass in the early summer and again in the late summer reduced final biomass by 40% at the end of the season; however, this clipping did not affect total biomass production or reproductive output. Festuca idahoensis neighbors did not increase the effects of clipping, and aboveground damage to C. maculosa did not release F. idahoensis from competition. In the greenhouse we used activated carbon to adsorb allelochemicals, which reduced the competitive effects of C. maculosa on F. idahoensis but not on F. scabrella or other C. maculosa. However, we found no increase in the allelopathic effects of C. maculosa after shoot herbivory. In summary, our results correspond with others indicating that exceptionally high intensities of herbivory are required to suppress C. maculosa growth and reproduction; however, even intense herbivory on C. maculosa does not insure that native bunchgrasses will benefit. [source]