Home About us Contact | |||
Finite-element Models (finite-element + models)
Selected AbstractsThree-dimensional finite-element model of the human temporomandibular joint disc during prolonged clenchingEUROPEAN JOURNAL OF ORAL SCIENCES, Issue 5 2006Miho Hirose In the temporomandibular joint (TMJ), overloading induced by prolonged clenching appears to be important in the cascade of events leading to disc displacement. In this study, the effect of disc displacement on joint stresses during prolonged clenching was studied. For this purpose, finite-element models of the TMJ, with and without disc displacement, were used. Muscle forces were used as a loading condition for stress analysis during a time-period of 10 min. The TMJ disc and connective tissue were characterized as a linear viscoelastic material. In the asymptomatic model, large stresses were found in the central and lateral part of the disc through clenching. In the retrodiscal tissue, stress relaxation occurred during the first 2 min of clenching. In the symptomatic model, large stresses were observed in the posterior part of the disc and in the retrodiscal tissue, and the stress level was kept constant through clenching. This indicates that during prolonged clenching the disc functions well in the asymptomatic joint, meanwhile the retrodiscal tissue in the symptomatic joint is subject to excessive stress. As this structure is less suitable for bearing large stresses, tissue damage may occur. In addition, storage of excessive strain energy might lead to breakage of the tissue. [source] Integrating modelling and experiments to assess dynamic musculoskeletal function in humansEXPERIMENTAL PHYSIOLOGY, Issue 2 2006J. W. Fernandez Magnetic resonance imaging, bi-plane X-ray fluoroscopy and biomechanical modelling are enabling technologies for the non-invasive evaluation of muscle, ligament and joint function during dynamic activity. This paper reviews these various technologies in the context of their application to the study of human movement. We describe how three-dimensional, subject-specific computer models of the muscles, ligaments, cartilage and bones can be developed from high-resolution magnetic resonance images; how X-ray fluoroscopy can be used to measure the relative movements of the bones at a joint in three dimensions with submillimetre accuracy; how complex 3-D dynamic simulations of movement can be performed using new computational methods based on non-linear control theory; and how musculoskeletal forces derived from such simulations can be used as inputs to elaborate finite-element models of a joint to calculate contact stress distributions on a subject-specific basis. A hierarchical modelling approach is highlighted that links rigid-body models of limb segments with detailed finite-element models of the joints. A framework is proposed that integrates subject-specific musculoskeletal computer models with highly accurate in vivo experimental data. [source] A spectral-element method for modelling cavitation in transient fluid,structure interactionINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 15 2004M. A. Sprague Abstract In an underwater-shock environment, cavitation (boiling) occurs as a result of reflection of the shock wave from the free surface and/or wetted structure causing the pressure in the water to fall below its vapour pressure. If the explosion is sufficiently distant from the structure, the motion of the fluid surrounding the structure may be assumed small, which allows linearization of the governing fluid equations. In 1984, Felippa and DeRuntz developed the cavitating acoustic finite-element (CAFE) method for modelling this phenomenon. While their approach is robust, it is too expensive for realistic 3D simulations. In the work reported here, the efficiency and flexibility of the CAFE approach has been substantially improved by: (i) separating the total field into equilibrium, incident, and scattered components, (ii) replacing the bilinear CAFE basis functions with high-order Legendre-polynomial basis functions, which produces a cavitating acoustic spectral element (CASE) formulation, (iii) employing a simple, non-conformal coupling method for the structure and fluid finite-element models, and (iv) introducing structure,fluid time-step subcycling. Field separation provides flexibility, as it admits non-acoustic incident fields that propagate without numerical dispersion. The use of CASE affords a significant reduction in the number of fluid degrees of freedom required to reach a given level of accuracy. The combined use of subcycling and non-conformal coupling affords order-of-magnitude savings in computational effort. These benefits are illustrated with 1D and 3D canonical underwatershock problems. Copyright © 2004 John Wiley & Sons, Ltd. [source] Biomechanics of the rostrum in crocodilians: A comparative analysis using finite-element modelingTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 8 2006Colin R. McHenry Abstract This article reports the use of simple beam and finite-element models to investigate the relationship between rostral shape and biomechanical performance in living crocodilians under a range of loading conditions. Load cases corresponded to simple biting, lateral head shaking, and twist feeding behaviors. The six specimens were chosen to reflect, as far as possible, the full range of rostral shape in living crocodilians: a juvenile Caiman crocodilus, subadult Alligator mississippiensis and Crocodylus johnstoni, and adult Caiman crocodilus, Melanosuchus niger, and Paleosuchus palpebrosus. The simple beam models were generated using morphometric landmarks from each specimen. Three of the finite-element models, the A. mississippiensis, juvenile Caiman crocodilus, and the Crocodylus johnstoni, were based on CT scan data from respective specimens, but these data were not available for the other models and so these,the adult Caiman crocodilus, M. niger, and P. palpebrosus,were generated by morphing the juvenile Caiman crocodilus mesh with reference to three-dimensional linear distance measured from specimens. Comparison of the mechanical performance of the six finite-element models essentially matched results of the simple beam models: relatively tall skulls performed best under vertical loading and tall and wide skulls performed best under torsional loading. The widely held assumption that the platyrostral (dorsoventrally flattened) crocodilian skull is optimized for torsional loading was not supported by either simple beam theory models or finite-element modeling. Rather than being purely optimized against loads encountered while subduing and processing food, the shape of the crocodilian rostrum may be significantly affected by the hydrodynamic constraints of catching agile aquatic prey. This observation has important implications for our understanding of biomechanics in crocodilians and other aquatic reptiles. Anat Rec Part A, 288A:827,849, 2006. © 2006 Wiley-Liss, Inc. [source] |