Finite Thickness (finite + thickness)

Distribution by Scientific Domains


Selected Abstracts


Similarities of stress concentrations in contact at round punches and fatigue at notches: implications to fretting fatigue crack initiation

FATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 7 2000
Giannakopoulos
A linear elastic model of the stress concentration due to contact between a rounded flat punch and a homogeneous substrate is presented, with the aim of investigating fretting fatigue crack initiation in contacting parts of vibrating structures including turbine engines. The asymptotic forms for the stress fields in the vicinity of a rounded punch-on-flat substrate are derived for both normal and tangential loading, using both analytical and finite element methods. Under the action of the normal load, P, the ensuing contact is of width 2b which includes an initial flat part of width 2a. The asymptotic stress fields for the sharply rounded flat punch contact have certain similarities with the asymptotic stress fields around the tip of a blunt crack. The analysis showed that the maximum tensile stress, which occurs at the contact boundary due to tangential load Q, is proportional to a mode II stress intensity factor of a sharp punch divided by the square root of the additional contact length due to the roundness of the punch, Q/(,(b,,,a),,b). The fretting fatigue crack initiation can then be investigated by relating the maximum tensile stress with the fatigue endurance stress. The result is analogous to that of Barsom and McNicol where the notched fatigue endurance stress was correlated with the stress intensity factor and the square root of the notch-tip radius. The proposed methodology establishes a ,notch analogue' by making a connection between fretting fatigue at a rounded punch/flat contact and crack initiation at a notch tip and uses fracture mechanics concepts. Conditions of validity of the present model are established both to avoid yielding and to account for the finite thickness of the substrate. The predictions of the model are compared with fretting fatigue experiments on Ti,6Al,4V and shown to be in good agreement. [source]


A viscoelastic model for the dynamic response of soils to periodical surface water disturbance

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 12 2006
P. C. Hsieh
Abstract In many instances soils can be assumed to behave like viscoelastic materials during loading/unloading cycles, and this study is aimed at setting up a viscoelastic model to investigate the dynamic response of a porous soil layer of finite thickness under the effect of periodically linear water waves. The waves and homogeneous water are described by potential theory and the porous material is described by a viscoelastic model, which is modified from Biot's poroelastic theory (1956). The distributions of pore water pressures and effective stresses of various soils such as silt, sand, and gravel are demonstrated by employing the proposed viscoelastic model. The discrepancies of the dynamic response between the simulations of viscoelastic model and elastic model are found to be strongly dependent on the wave frequency. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Dynamic response of a soft soil layer to flow and periodical disturbance

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 11 2003
Ping-Cheng Hsieh
Abstract The dynamic response of a soft soil layer of finite thickness under the mutual effects of flow and periodical disturbance at the free surface is discussed in this work. The homogeneous water is governed by potential theory and the soil layer obeys Biot's theory of poroelasticity. The boundary-value problem is solved by an analytical algorithm, in which the wave number is found first. Secondly, the closed form solutions are found by a two-parameter perturbation method with the boundary-layer correction. The results are also compared with those of the poroelastic soil layer of infinite thickness to show the impermeable rigid boundary effect. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Wave-induced seepage flux into anisotropic seabeds

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 8 2001
D. S. Jeng
Abstract Considerable effort has been devoted to quantifying the wave-induced soil response in a porous seabed in the last few decades. Most previous investigations have focused on the analysis of pore pressure and effective stresses within isotropic sediments, despite strong evidence of anisotropic soil behaviour reported in the literature. Furthermore, the seepage flux, which is important in the context of contaminant transport, has not been examined. In this paper, we focus on water wave-driven seepage in anisotropic marine sediments of finite thickness. The numerical results predict that the effects of hydraulic anisotropy and anisotropic soil behaviour on the wave-driven seepage in marine sediment are significant. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Error analysis and Hertz vector approach for an electromagnetic interaction between a line current and a conducting plate

INTERNATIONAL JOURNAL OF NUMERICAL MODELLING: ELECTRONIC NETWORKS, DEVICES AND FIELDS, Issue 3 2003
M.T. Attaf
Abstract In the present paper we first introduce the Hertz vector potential and examine how the specific case of electromagnetic field diffusion problems can be formulated in terms of this potential. Its connection to other commonly used potentials is presented and a basic approach in the form of a suitable set of equations is introduced. The suggested method is then successfully applied to solve the case of an electromagnetic interaction between a straight conductor carrying sinusoidal current and a finite thickness fixed plate. Due to the oscillatory aspect of the integral solution obtained, an appropriate numerical treatment is investigated and various curves are shown to illustrate the convergence behaviour. Copyright © 2003 John Wiley & Sons, Ltd. [source]