Finite Mixture Models (finite + mixture_models)

Distribution by Scientific Domains


Selected Abstracts


Finite Mixture Models for Mapping Spatially Dependent Disease Counts

BIOMETRICAL JOURNAL, Issue 1 2009
Marco Alfó
Abstract A vast literature has recently been concerned with the analysis of variation in disease counts recorded across geographical areas with the aim of detecting clusters of regions with homogeneous behavior. Most of the proposed modeling approaches have been discussed for the univariate case and only very recently spatial models have been extended to predict more than one outcome simultaneously. In this paper we extend the standard finite mixture models to the analysis of multiple, spatially correlated, counts. Dependence among outcomes is modeled using a set of correlated random effects and estimation is carried out by numerical integration through an EM algorithm without assuming any specific parametric distribution for the random effects. The spatial structure is captured by the use of a Gibbs representation for the prior probabilities of component membership through a Strauss-like model. The proposed model is illustrated using real data (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Bayesian Finite Markov Mixture Model for Temporal Multi-Tissue Polygenic Patterns

BIOMETRICAL JOURNAL, Issue 1 2009
Yulan Liang
Abstract Finite mixture models can provide the insights about behavioral patterns as a source of heterogeneity of the various dynamics of time course gene expression data by reducing the high dimensionality and making clear the major components of the underlying structure of the data in terms of the unobservable latent variables. The latent structure of the dynamic transition process of gene expression changes over time can be represented by Markov processes. This paper addresses key problems in the analysis of large gene expression data sets that describe systemic temporal response cascades and dynamic changes to therapeutic doses in multiple tissues, such as liver, skeletal muscle, and kidney from the same animals. Bayesian Finite Markov Mixture Model with a Dirichlet Prior is developed for the identifications of differentially expressed time related genes and dynamic clusters. Deviance information criterion is applied to determine the number of components for model comparisons and selections. The proposed Bayesian models are applied to multiple tissue polygenetic temporal gene expression data and compared to a Bayesian model-based clustering method, named CAGED. Results show that our proposed Bayesian Finite Markov Mixture model can well capture the dynamic changes and patterns for irregular complex temporal data (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Peak quantification in surface-enhanced laser desorption/ionization by using mixture models

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 19 2006
Martijn Dijkstra
Abstract Surface-enhanced laser desorption/ionization (SELDI) time of flight (TOF) is a mass spectrometry technology for measuring the composition of a sampled protein mixture. A mass spectrum contains peaks corresponding to proteins in the sample. The peak areas are proportional to the measured concentrations of the corresponding proteins. Quantifying peak areas is difficult for existing methods because peak shapes are not constant across a spectrum and because peaks often overlap. We present a new method for quantifying peak areas. Our method decomposes a spectrum into peaks and a baseline using so-called statistical finite mixture models. We illustrate our method in detail on 8 samples from culture media of adipose tissue and globally on 64 samples from serum to compare our method to the standard Ciphergen method. Both methods give similar estimates for singleton peaks, but not for overlapping peaks. The Ciphergen method overestimates the heights of such peaks while our method still gives appropriate estimates. Peak quantification is an important step in pre-processing SELDI-TOF data and improvements therein will pay off in the later biomarker discovery phase. [source]


The likelihood ratio test for homogeneity in finite mixture models

THE CANADIAN JOURNAL OF STATISTICS, Issue 2 2001
Hanfeng Chen
Abstract The authors study the asymptotic behaviour of the likelihood ratio statistic for testing homogeneity in the finite mixture models of a general parametric distribution family. They prove that the limiting distribution of this statistic is the squared supremum of a truncated standard Gaussian process. The autocorrelation function of the Gaussian process is explicitly presented. A re-sampling procedure is recommended to obtain the asymptotic p -value. Three kernel functions, normal, binomial and Poisson, are used in a simulation study which illustrates the procedure. [source]


Finite Mixture Models for Mapping Spatially Dependent Disease Counts

BIOMETRICAL JOURNAL, Issue 1 2009
Marco Alfó
Abstract A vast literature has recently been concerned with the analysis of variation in disease counts recorded across geographical areas with the aim of detecting clusters of regions with homogeneous behavior. Most of the proposed modeling approaches have been discussed for the univariate case and only very recently spatial models have been extended to predict more than one outcome simultaneously. In this paper we extend the standard finite mixture models to the analysis of multiple, spatially correlated, counts. Dependence among outcomes is modeled using a set of correlated random effects and estimation is carried out by numerical integration through an EM algorithm without assuming any specific parametric distribution for the random effects. The spatial structure is captured by the use of a Gibbs representation for the prior probabilities of component membership through a Strauss-like model. The proposed model is illustrated using real data (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]