Home About us Contact | |||
Fine-scale Spatial Genetic Structure (fine-scale + spatial_genetic_structure)
Selected AbstractsFine-Scale Spatial Genetic Structure of the Distylous Primula veris in Fragmented HabitatsPLANT BIOLOGY, Issue 3 2007F. van Rossum Abstract: In Flanders (northern Belgium), the distylous self-incompatible perennial herb Primula veris is common, but mainly occurs in fragmented habitats. Distyly, which favours disassortative mating, is characterized in P. veris by two genetically determined floral morph types (pin or thrum). Using 18 polymorphic loci, we investigated fine-scale spatial genetic structure (SGS) and spatial distribution of the morphs within four populations from two regions that differ in degree of habitat fragmentation. We studied the contributions made by sexual reproduction and clonal propagation and compared the SGS patterns between pin and thrum morph types. Clonal growth was very restricted to a few individuals and to short distances. One population showed a non-random spatial distribution of the morphs. Pin and thrum individuals differed in SGS patterns at a small scale, suggesting intrapin biparental inbreeding, also related to high plant densities. This may be explained by partial self-compatibility of the pin morph combined with restricted seed dispersal and pollinator behaviour. There is an indication of more pronounced SGS when populations occur in highly fragmented habitats. From our findings, we may hypothesize disruption of the gene flow processes if these large populations evolve into patchworks of small remnants, but also a possible risk for long-term population survival if higher intrapin biparental inbreeding leads to inbreeding depression. Our study emphasizes the need for investigating the interactions between the heterostylous breeding system, population demographic and genetic structure for understanding population dynamics in fragmented habitats and for developing sustainable conservation strategies. [source] Fine-scale spatial genetic structure and dispersal among spotted salamander (Ambystoma maculatum) breeding populationsMOLECULAR ECOLOGY, Issue 2 2007KELLY R. ZAMUDIO Abstract We examined fine-scale genetic variation among breeding aggregations of the spotted salamander (Ambystoma maculatum) to quantify dispersal, interpopulation connectivity and population genetic structure. Spotted salamanders rely on temporary ponds or wetlands for aggregate breeding. Adequate breeding sites are relatively isolated from one another and field studies suggest considerable adult site fidelity; therefore, we expected to find population structure and differentiation at small spatial scales. We used microsatellites to estimate population structure and dispersal among 29 breeding aggregations in Tompkins County, New York, USA, an area encompassing 1272 km2. Bayesian and frequency-based analyses revealed fine-scale genetic structure with two genetically defined demes: the North deme included seven breeding ponds, and the South deme included 13 ponds. Nine ponds showed evidence of admixture between these two genetic pools. Bayesian assignment tests for detection of interpopulation dispersal indicate that immigration among ponds is common within demes, and that certain populations serve as sources of immigrants to neighbouring ponds. Likewise, spatial genetic correlation analyses showed that populations , 4.8 km distant from each other show significant genetic correlation that is not evident at higher scales. Within-population levels of relatedness are consistently larger than expected if mating were completely random across ponds, and in the case of a few ponds, within-population processes such as inbreeding or reproductive skew contribute significantly to differentiation from neighbouring ponds. Our data underscore the importance of these within-population processes as a source of genetic diversity across the landscape, despite considerable population connectivity. Our data further suggest that spotted salamander breeding groups behave as metapopulations, with population clusters as functional units, but sufficient migration among demes to allow for potential rescue and recolonization. Amphibian habitats are becoming increasingly fragmented and a clear understanding of dispersal and patterns of population connectivity for taxa with different ecologies and life histories is crucial for their conservation. [source] Multigenerational analysis of spatial structure in the terrestrial, food-deceptive orchid Orchis masculaJOURNAL OF ECOLOGY, Issue 2 2009Hans Jacquemyn Summary 1In long-lived, terrestrial orchids, strong aggregation of adults and recruits within populations and pronounced spatial association between recruits and adults can be expected when seed dispersal is limited, probabilities of seed germination decrease with increasing distance from mother plants and/or not all mother plants contribute to future generations. When individuals are distributed evenly across life-history stages, these processes can also be expected to result in a significant fine-scale spatial genetic structure in recruits that will persist into the adult-stage class. 2We combined detailed spatial genetic and point pattern analyses across different generations with parentage analyses to elucidate the role of the diverse processes that might determine spatial structure in Orchis mascula. 3Analyses of spatial point patterns showed a significant association between adults and recruits and similar clustering patterns for both. Weak, but highly significant spatial genetic structure was observed in adults and recruits, but no significant differences were observed across life stages, indicating that the spatial genetic structure present in recruits persists into the adult stage. 4Parentage analyses highlighted relatively short seed dispersal distances (median offspring-recruitment distance: 1.55 and 1.70 m) and differential contribution of mother plants to future generations. 5Persistence of fine-scale spatial genetic structure from seedlings into the adult stage class is consistent with the life history of O. mascula, whereas relatively large dispersal distances of both pollen and seeds compared to the fine-scale clustering of adults and seedlings suggest overlapping seed shadows and mixing of genotypes within populations as the major factors explaining the observed weak spatial genetic structure. 6Nonetheless, comparison of the spatial association between recruits and adults with the genetic analysis of offspring-parent distances suggests that the tight clustering of recruits around adults was probably caused by decreasing probabilities of seed germination with increasing distance from mother plants. 7Synthesis. This study shows that the approach presented here, which combines spatial genetic and spatial pattern analyses with parentage analyses, may be broadly applied to other plant species to elucidate the processes that determine spatial structure within their populations. [source] Spatial genetic structure links between soil seed banks and above-ground populations of Primula modesta in subalpine grasslandJOURNAL OF ECOLOGY, Issue 1 2006A. SHIMONO Summary 1The spatial genetic structure of soil seed banks establishes the initial template for development of spatial genetic structure in above-ground plants, but is rarely evaluated. 2We used kinship coefficients to analyse the fine-scale spatial genetic autocorrelation of plants and of seed banks from different soil depths for Primula modesta at a subalpine fen site on Mt Asama, central Japan. 3The spatial genetic structure of surface seeds (0,1 cm depth) was significant, while deeper seeds (1,5 cm depth) had no significant genetic structure. We also detected a more pronounced spatial genetic association between the surface seeds and flowering genets than between the deeper seeds and flowering genets. 4These results suggest that the surface seed bank accounts for a large proportion of the previous season's seed dispersal and therefore represents the transient seed bank, whereas the deeper (persistent) seed bank pools the reproductive output of multiple generations. 5Directional analysis indicated that secondary dispersal by running water modifies the spatial genetic structure and extends dispersal distances. Over time, this may impact on the spatial pattern of soil seeds, possibly accounting for the absence of spatial genetic structure in deeper seeds. 6Emerging seedlings and flowering ramets were strongly clustered together at distances up to 20 cm. Surviving seedlings were aggregated at short distances because of the patchy spatial distribution of safe sites for establishment, allowing development and strengthening of the marked fine-scale spatial genetic structure. [source] Population Genetic Structure of the Medicinal Plant Vitex rotundifolia in China: Implications for its Use and ConservationJOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 9 2008Yuan Hu Abstract Vitex rotundifolia L. is an important plant species used in traditional Chinese medicine. For its efficient use and conservation, genetic diversity and clonal variation of V. rotundifolia populations in China were investigated using inter-simple sequence repeat markers. Fourteen natural populations were included to estimate genetic diversity, and a large population with 135 individuals was used to analyze clonal variation and fine-scale spatial genetic structure. The overall genetic diversity (GD) of V. rotundifolia populations in China was moderate (GD = 0.190), with about 40% within-population variation. Across all populations surveyed, the average within-population diversity was moderate (P = 22.6%; GD = 0.086). A relatively high genetic differentiation (Gst = 0.587) among populations was detected based on the analysis of molecular variance data. Such characteristics of V. rotundifolia are likely attributed to its sexual/asexual reproduction and limited gene flow. The genotypic diversity (D = 0.992) was greater than the average values of a clonal plant, indicating its significant reproduction through seedlings. Spatial autocorrelation analysis showed a clear within-population structure with gene clusters of approximately 20 m. Genetic diversity patterns of V. rotundifolia in China provide a useful guide for its efficient use and conservation by selecting particular populations displaying greater variation that may contain required medicinal compounds, and by sampling individuals in a population at >20 m spatial intervals to avoid collecting individuals with identical or similar genotypes. [source] Destination-based seed dispersal homogenizes genetic structure of a tropical palmMOLECULAR ECOLOGY, Issue 8 2010JORDAN KARUBIAN Abstract As the dominant seed dispersal agents in many ecosystems, frugivorous animals profoundly impact gene movement and fine-scale genetic structure of plants. Most frugivores engage in some form of destination-based dispersal, in that they move seeds towards specific destinations, resulting in clumped distributions of seeds away from the source tree. Molecular analyses of dispersed seeds and seedlings suggest that destination-based dispersal may often yield clusters of maternal genotypes and lead to pronounced local genetic structure. The long-wattled umbrellabird Cephalopterus penduliger is a frugivorous bird whose lek mating system creates a species-specific pattern of seed dispersal that can potentially be distinguished from background dispersal processes. We used this system to test how destination-based dispersal by umbrellabirds into the lek affects gene movement and genetic structure of one of their preferred food sources Oenocarpus bataua, a canopy palm tree. Relative to background dispersal processes, umbrellabird mating behaviour yielded more diverse seed pools in leks that included on average five times more seed sources and a higher incidence of long-distance dispersal events. This resulted in markedly lower fine-scale spatial genetic structure among established seedlings in leks than background areas. These species-specific impacts of destination-based dispersal illustrate how detailed knowledge of disperser behaviour can elucidate the mechanistic link driving observed patterns of seed movement and genetic structure. [source] Extensive spatial genetic structure revealed by AFLP but not SSR molecular markers in the wind-pollinated tree, Fagus sylvaticaMOLECULAR ECOLOGY, Issue 5 2007ALISTAIR S. JUMP Abstract Studies of fine-scale spatial genetic structure (SGS) in wind-pollinated trees have shown that SGS is generally weak and extends over relatively short distances (less than 30,40 m) from individual trees. However, recent simulations have shown that detection of SGS is heavily dependent on both the choice of molecular markers and the strategy used to sample the studied population. Published studies may not always have used sufficient markers and/or individuals for the accurate estimation of SGS. To assess the extent of SGS within a population of the wind-pollinated tree Fagus sylvatica, we genotyped 200 trees at six microsatellite or simple sequence repeat (SSR) loci and 250 amplified fragment length polymorphisms (AFLP) and conducted spatial analyses of pairwise kinship coefficients. We re-sampled our data set over individuals and over loci to determine the effect of reducing the sample size and number of loci used for SGS estimation. We found that SGS estimated from AFLP markers extended nearly four times further than has been estimated before using other molecular markers in this species, indicating a persistent effect of restricted gene flow at small spatial scales. However, our SSR-based estimate was in agreement with other published studies. Spatial genetic structure in F. sylvatica and similar wind-pollinated trees may therefore be substantially larger than has been estimated previously. Although 100,150 AFLP loci and 150,200 individuals appear sufficient for adequately estimating SGS in our analysis, 150,200 individuals and six SSR loci may still be too few to provide a good estimation of SGS in this species. [source] Detection and visualization of spatial genetic structure in continuous Eucalyptus globulus forestMOLECULAR ECOLOGY, Issue 4 2007TIM H. JONES Abstract Visualizing the pattern of variation using microsatellites within a Eucalyptus globulus forest on the island of Tasmania provided surprising insights into the complex nature of the fine-scale spatial genetic structure that resides in these forests. We used spatial autocorrelation and principal coordinate analysis to compare fine-scale genetic structure between juvenile and mature cohorts in a study area, 140 m in diameter, located within a typical, continuous E. globulus forest. In total, 115 juvenile and 168 mature individuals were genotyped with eight highly polymorphic microsatellite loci. There was no significant difference in the level of genetic diversity between cohorts. However, there were differences in the spatial distribution of the genetic variation. Autocorrelation analysis provided clear evidence for significant spatial genetic structure in the mature cohort and significant, but weaker, structure in the juvenile cohort. The spatial interpolation of principal coordinate axes, derived from ordination of the genetic distance matrix between individuals, revealed a spatially coherent family group which was evident in both cohorts. Direct comparison of the genetic structure within each cohort allowed visualization of a shift in the spatial distribution of genetic variation within the population of approximately 10 m. As the shift coincided with the direction of prevailing winds, it is hypothesized that this phenomenon is due to downwind dispersal of seeds and is indicative of the important role of prevailing winds in forcing eastward gene flow in these high-latitude forests. [source] Fine-scale genetic structure and gene dispersal inferences in 10 Neotropical tree speciesMOLECULAR ECOLOGY, Issue 2 2006OLIVIER J. HARDY Abstract The extent of gene dispersal is a fundamental factor of the population and evolutionary dynamics of tropical tree species, but directly monitoring seed and pollen movement is a difficult task. However, indirect estimates of historical gene dispersal can be obtained from the fine-scale spatial genetic structure of populations at drift,dispersal equilibrium. Using an approach that is based on the slope of the regression of pairwise kinship coefficients on spatial distance and estimates of the effective population density, we compare indirect gene dispersal estimates of sympatric populations of 10 tropical tree species. We re-analysed 26 data sets consisting of mapped allozyme, SSR (simple sequence repeat), RAPD (random amplified polymorphic DNA) or AFLP (amplified fragment length polymorphism) genotypes from two rainforest sites in French Guiana. Gene dispersal estimates were obtained for at least one marker in each species, although the estimation procedure failed under insufficient marker polymorphism, limited sample size, or inappropriate sampling area. Estimates generally suffered low precision and were affected by assumptions regarding the effective population density. Averaging estimates over data sets, the extent of gene dispersal ranged from 150 m to 1200 m according to species. Smaller gene dispersal estimates were obtained in species with heavy diaspores, which are presumably not well dispersed, and in populations with high local adult density. We suggest that limited seed dispersal could indirectly limit effective pollen dispersal by creating higher local tree densities, thereby increasing the positive correlation between pollen and seed dispersal distances. We discuss the potential and limitations of our indirect estimation procedure and suggest guidelines for future studies. [source] Local forest environment largely affects below-ground growth, clonal diversity and fine-scale spatial genetic structure in the temperate deciduous forest herb Paris quadrifoliaMOLECULAR ECOLOGY, Issue 14 2005HANS JACQUEMYN Abstract Paris quadrifolia (herb Paris) is a long-lived, clonal woodland herb that shows strong differences in local population size and shoot density along an environmental gradient of soil and light conditions. This environmentally based structuring may be mediated by differences in clonal growth and seedling recruitment through sexual reproduction. To study the interrelationship between environmental conditions and spatial patterns of clonal growth, the spatial genetic structure of four P. quadrifolia populations growing in strongly contrasting sites was determined. In the first place, plant excavations were performed in order to (i) determine differences in below-ground growth of genets, (ii) investigate connectedness of ramets and (iii) determine total genet size. Although no differences in internode length were found among sites, clones in moist sites were much smaller (genets usually consisted of 1,3 interconnected shoots, most of them flowering) than genets in dry sites, which consisted of up to 15 interconnected shoots, the majority of which were vegetative. Further, amplified fragment length polymorphism (AFLP) markers were used. Clonal diversity was higher in populations located in moist and productive ash,poplar forests compared to those found in drier and less productive mixed forest sites (G/N: 0.27 and 0.14 and Simpson's D: 0.84 and 0.75, respectively). Patterns of spatial population genetic structure under dry conditions revealed several large clones dominating the entire population, whereas in moist sites many small genets were observed. Nevertheless, strong spatial genetic structure of the genet population was observed. Our results clearly demonstrate that patterns of clonal diversity and growth form of P. quadrifolia differ among environments. Limited seedling recruitment and large clone sizes due to higher connectedness of ramets explain the low clonal diversity in dry sites. In moist sites, higher levels of clonal diversity and small clone sizes indicate repeated seedling recruitment, whereas strong spatial genetic structure suggests limited seed dispersal within populations. [source] Fine-scale spatial genetic correlation analyses reveal strong female philopatry within a brush-tailed rock-wallaby colony in southeast QueenslandMOLECULAR ECOLOGY, Issue 12 2004S. L. HAZLITT Abstract We combine spatial data on home ranges of individuals and microsatellite markers to examine patterns of fine-scale spatial genetic structure and dispersal within a brush-tailed rock-wallaby (Petrogale penicillata) colony at Hurdle Creek Valley, Queensland. Brush-tailed rock-wallabies were once abundant and widespread throughout the rocky terrain of southeastern Australia; however, populations are nearly extinct in the south of their range and in decline elsewhere. We use pairwise relatedness measures and a recent multilocus spatial autocorrelation analysis to test the hypotheses that in this species, within-colony dispersal is male-biased and that female philopatry results in spatial clusters of related females within the colony. We provide clear evidence for strong female philopatry and male-biased dispersal within this rock-wallaby colony. There was a strong, significant negative correlation between pairwise relatedness and geographical distance of individual females along only 800 m of cliff line. Spatial genetic autocorrelation analyses showed significant positive correlation for females in close proximity to each other and revealed a genetic neighbourhood size of only 600 m for females. Our study is the first to report on the fine-scale spatial genetic structure within a rock-wallaby colony and we provide the first robust evidence for strong female philopatry and spatial clustering of related females within this taxon. We discuss the ecological and conservation implications of our findings for rock-wallabies, as well as the importance of fine-scale spatial genetic patterns in studies of dispersal behaviour. [source] Fine-Scale Spatial Genetic Structure of the Distylous Primula veris in Fragmented HabitatsPLANT BIOLOGY, Issue 3 2007F. van Rossum Abstract: In Flanders (northern Belgium), the distylous self-incompatible perennial herb Primula veris is common, but mainly occurs in fragmented habitats. Distyly, which favours disassortative mating, is characterized in P. veris by two genetically determined floral morph types (pin or thrum). Using 18 polymorphic loci, we investigated fine-scale spatial genetic structure (SGS) and spatial distribution of the morphs within four populations from two regions that differ in degree of habitat fragmentation. We studied the contributions made by sexual reproduction and clonal propagation and compared the SGS patterns between pin and thrum morph types. Clonal growth was very restricted to a few individuals and to short distances. One population showed a non-random spatial distribution of the morphs. Pin and thrum individuals differed in SGS patterns at a small scale, suggesting intrapin biparental inbreeding, also related to high plant densities. This may be explained by partial self-compatibility of the pin morph combined with restricted seed dispersal and pollinator behaviour. There is an indication of more pronounced SGS when populations occur in highly fragmented habitats. From our findings, we may hypothesize disruption of the gene flow processes if these large populations evolve into patchworks of small remnants, but also a possible risk for long-term population survival if higher intrapin biparental inbreeding leads to inbreeding depression. Our study emphasizes the need for investigating the interactions between the heterostylous breeding system, population demographic and genetic structure for understanding population dynamics in fragmented habitats and for developing sustainable conservation strategies. [source] |