Home About us Contact | |||
Finer Scale (finer + scale)
Selected AbstractsThe greening and browning of Alaska based on 1982,2003 satellite dataGLOBAL ECOLOGY, Issue 4 2008David Verbyla Abstract Aim To examine the trends of 1982,2003 satellite-derived normalized difference vegetation index (NDVI) values at several spatial scales within tundra and boreal forest areas of Alaska. Location Arctic and subarctic Alaska. Methods Annual maximum NDVI data from the twice monthly Global Inventory Modelling and Mapping Studies (GIMMS) NDVI 1982,2003 data set with 64-km2 pixels were extracted from a spatial hierarchy including three large regions: ecoregion polygons within regions, ecozone polygons within boreal ecoregions and 100-km climate station buffers. The 1982,2003 trends of mean annual maximum NDVI values within each area, and within individual pixels, were computed using simple linear regression. The relationship between NDVI and temperature and precipitation was investigated within climate station buffers. Results, At the largest spatial scale of polar, boreal and maritime regions, the strongest trend was a negative trend in NDVI within the boreal region. At a finer scale of ecoregion polygons, there was a strong positive NDVI trend in cold arctic tundra areas, and a strong negative trend in interior boreal forest areas. Within boreal ecozone polygons, the weakest negative trends were from areas with a maritime climate or colder mountainous ecozones, while the strongest negative trends were from warmer basin ecozones. The trends from climate station buffers were similar to ecoregion trends, with no significant trends from Bering tundra buffers, significant increasing trends among arctic tundra buffers and significant decreasing trends among interior boreal forest buffers. The interannual variability of NDVI among the arctic tundra buffers was related to the previous summer warmth index. The spatial pattern of increasing tundra NDVI at the pixel level was related to the west-to-east spatial pattern in changing climate across arctic Alaska. There was no significant relationship between interannual NDVI and precipitation or temperature among the boreal forest buffers. The decreasing NDVI trend in interior boreal forests may be due to several factors including increased insect/disease infestations, reduced photosynthesis and a change in root/leaf carbon allocation in response to warmer and drier growing season climate. Main conclusions There was a contrast in trends of 1982,2003 annual maximum NDVI, with cold arctic tundra significantly increasing in NDVI and relatively warm and dry interior boreal forest areas consistently decreasing in NDVI. The annual maximum NDVI from arctic tundra areas was strongly related to a summer warmth index, while there were no significant relationships in boreal areas between annual maximum NDVI and precipitation or temperature. Annual maximum NDVI was not related to spring NDVI in either arctic tundra or boreal buffers. [source] Diagnostic osteology and analysis of the Mid- to Late Holocene dynamics of shags and cormorants in Tierra del FuegoINTERNATIONAL JOURNAL OF OSTEOARCHAEOLOGY, Issue 2 2007D. Causey Abstract We present here illustrated characteristics and anatomical descriptions of features that can be used to discriminate between four common skeletal elements (i.e. humerus, coracoid, femur, tarsometatarsus) of the five species of shags and cormorants known to occur in southern South America. We also present a detailed study of their distribution and abundance from about 6000 years before present to historical times as revealed by identification of faunal material excavated earlier and by re-analysis of material published previously. Our results present a high-resolution examination of the avian resource base used by early human hunters, and provide a foundation for future studies on the palaeoavifauna of Tierra del Fuego during the Mid- to Late Holocene. On the broadest scales, species diversity of the Phalacrocoracidae is qualitatively stable over space and time, a pattern that is also reflected in the larger marine bird community. On a finer scale, however, our results indicate that the abundance and distribution of cormorants and shags in Mid- and Late Holocene zooarchaeological deposits varied in a complex manner through time. These patterns do not appear to be related to proximity effects of hunters to colonies, but to other factors possibly associated with environmental change. Copyright © 2006 John Wiley & Sons, Ltd. [source] The forests of presettlement New England, USA: spatial and compositional patterns based on town proprietor surveysJOURNAL OF BIOGEOGRAPHY, Issue 10-11 2002Charles V. Cogbill Abstract Aim, This study uses the combination of presettlement tree surveys and spatial analysis to produce an empirical reconstruction of tree species abundance and vegetation units at different scales in the original landscape. Location, The New England study area extends across eight physiographic sections, from the Appalachian Mountains to the Atlantic Coastal Plain. The data are drawn from 389 original towns in what are now seven states in the north-eastern United States. These towns have early land division records which document the witness trees growing in the town before European settlement (c. seventeenth to eighteenth century ad). Methods, Records of witness trees from presettlement surveys were collated from towns throughout the study area (1.3 × 105 km2). Tree abundance was averaged over town-wide samples of multiple forest types, integrating proportions of taxa at a local scale (102 km2). These data were summarized into genus groups over the sample towns, which were then mapped [geographical information system (GIS)], classified (Cluster Analysis) and ordinated [detrended correspondence analysis (DCA)]. Modern climatic and topographic variables were also derived from GIS analyses for each town and all town attributes were quantitatively compared. Distributions of both individual species and vegetation units were analysed and displayed for spatial analysis of vegetation structure. Results, The tally of 153,932 individual tree citations show a dominant latitudinal trend in the vegetation. Spatial patterns are concisely displayed as pie charts of genus composition arrayed on sampled towns. Detailed interpolated frequency surfaces show spatial patterns of range and abundance of the dominant taxa. Oak, spruce, hickory and chestnut reach distinctive range limits within the study area. Eight vegetation clusters are distinguished. The northern vegetation is a continuous geographical sequence typified by beech while the southern vegetation is an amorphous group typified by oak. Main conclusions, The wealth of information recorded in the New England town presettlement surveys is an ideal data base to elucidate the natural patterns of vegetation over an extensive spatial area. The timing, town-wide scale, expansive coverage, quantitative enumeration and unbiased estimates are critical advantages of proprietor lotting surveys in determining original tree distributions. This historical,geographical approach produces a vivid reconstruction of the natural vegetation and species distributions as portrayed on maps. The spatial, vegetational and environmental patterns all demonstrate a distinct ,tension zone' separating ,northern hardwood' and ,central hardwood' towns. The presettlement northern hardwood forests, absolutely dominated by beech, forms a continuum responding to a complex climatic gradient of altitude and latitude. The oak forests to the south are distinguished by non-zonal units, probably affected by fire. Although at the continental scale, the forests seem to be a broad transition, at a finer scale they respond to topography such as the major valleys or the northern mountains. This study resets some preconceptions about the original forest, such as the overestimation of the role of pine, hemlock and chestnut and the underestimation of the distinctiveness of the tension zone. Most importantly, the forests of the past and their empirical description provide a basis for many ecological, educational and management applications today. [source] Technical Note: Grading the vertical cup:disc ratio and the effect of scalingOPHTHALMIC AND PHYSIOLOGICAL OPTICS, Issue 6 2007Ruth Bennett Abstract Purpose:, To evaluate the effect of scaling on sensitivity to change for grading the vertical cup:disc ratio (CDR). Methods:, Vertical CDR was assessed by six observers (three ophthalmologists and three optometrists) on 43 stereo disc photographs. Repeated observations were made for both 0.1 and 0.05 interval scales. Paired differences were calculated for all observers and each observer separately. Mean and standard deviation of differences and agreement statistics were used to compare scales. Results:, Five observers demonstrated a reduction in the spread of differences (mean difference 0.19 to 0.15) and all observers demonstrated a reduction in concordance using the finer scale (mean concordance 54% to 39%). Conclusion:, The use of a finer scale reduces test,retest variability and increases sensitivity to change when estimating the vertical CDR. Use of this scale does not require any additional resource and it may be easily implemented in routine clinical practice. [source] Joint orientation and function in great ape and human proximal pedal phalangesAMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 1 2010Nicole L. Griffin Abstract Previous studies have referred to the degree of dorsal canting of the base of the proximal phalanx as an indicator of human-like metatarsophalangeal joint function and thus a diagnostic trait of habitual bipedality in the fossil record. Here, we used a simple method to investigate differences in forefoot function on a finer scale. Building on Duncan et al.'s (Am J Phys Anthropol 93 [1994] 67,81) research, we tested whether dorsal canting reflects differences between sexes in locomotor behavior, whether habitual shoe wear influences dorsal canting in humans, and whether proximal joint morphology differs between rays in Pan and humans. Our results corroborate previous research in showing that humans have proximal phalanges with joint orientations that are significantly more dorsal than, but overlap with, those of great apes. We also found that male gorillas have significantly more dorsally canted second proximal phalanges than their female counterparts, while the opposite pattern between the sexes was found in Pan troglodytes. Inter-ray comparisons indicate that Pan have more dorsally canted first proximal phalanges than second proximal phalanges, while the opposite pattern was found in humans. Minimally shod humans have slightly but significantly more dorsally canted second proximal phalanges than those of habitually shod humans, indicating that phalanges of unshod humans provide the most appropriate comparative samples for analyses of early hominins. Overall, our analysis suggests that though the measurement of dorsal canting is limited in its sensitivity to certain intraspecific differences in function, phalangeal joint orientation reflects interspecific differences in joint function, with the caveat that different patterns of forefoot function during gait can involve similar articular sets of metatarsophalangeal joints. Am J Phys Anthropol, 2010. © 2009 Wiley-Liss, Inc. [source] Receptive fields and functional architecture in the retinaTHE JOURNAL OF PHYSIOLOGY, Issue 12 2009Vijay Balasubramanian Functional architecture of the striate cortex is known mostly at the tissue level , how neurons of different function distribute across its depth and surface on a scale of millimetres. But explanations for its design , why it is just so , need to be addressed at the synaptic level, a much finer scale where the basic description is still lacking. Functional architecture of the retina is known from the scale of millimetres down to nanometres, so we have sought explanations for various aspects of its design. Here we review several aspects of the retina's functional architecture and find that all seem governed by a single principle: represent the most information for the least cost in space and energy. Specifically: (i) why are OFF ganglion cells more numerous than ON cells? Because natural scenes contain more negative than positive contrasts, and the retina matches its neural resources to represent them equally well; (ii) why do ganglion cells of a given type overlap their dendrites to achieve 3-fold coverage? Because this maximizes total information represented by the array , balancing signal-to-noise improvement against increased redundancy; (iii) why do ganglion cells form multiple arrays? Because this allows most information to be sent at lower rates, decreasing the space and energy costs for sending a given amount of information. This broad principle, operating at higher levels, probably contributes to the brain's immense computational efficiency. [source] CORRESPONDENCE AND DISCRIMINANT ANALYSES OF SAND AND SAND TEMPER COMPOSITIONS, TONTO BASIN, ARIZONA,ARCHAEOMETRY, Issue 2 2000J. M. HEIDKE Geologists use petrographic modal analysis to relate fluvial sand composition to source rock composition, thus establishing provenance. Archaeologists seeking to establish provenance of sand temper in pottery can use similar petrographic methods, but their finer scale of investigation requires more precise statistical tools than those employed by geologists. A quantitative method for performing that task is presented. It utilizes correspondence analysis and discriminant analysis of logratio transformed point-count data to define petrofacies, or sand temper resource procurement zones. The procedure is illustrated with sand and sand-tempered sherd samples collected from the Tonto Basin, central Arizona; temporal trends in utilitarian ceramic production c. AD 100,1350 are reviewed. [source] Wavelet analysis of the scale- and location-dependent correlation of modelled and measured nitrous oxide emissions from soilEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 1 2005A. E. Milne Summary We used the wavelet transform to quantify the performance of models that predict the rate of emission of nitrous oxide (N2O) from soil. Emissions of N2O and other soil variables that influence emissions were measured on soil cores collected at 256 locations across arable land in Bedfordshire, England. Rate-limiting models of N2O emissions were constructed and fitted to the data by functional analysis. These models were then evaluated by wavelet variance and wavelet correlations, estimated from coefficients of the adapted maximal overlap discrete wavelet transform (AMODWT), of the fitted and measured emission rates. We estimated wavelet variances to assess whether the partition of the variance of modelled rates of N2O emission between scales reflected that of the data. Where the relative distribution of variance in the model is more skewed to coarser scales than is the case for the observation, for example, this indicates that the model predictions are too smooth spatially, and fail adequately to represent some of the variation at finer scales. Scale-dependent wavelet correlations between model and data were used to quantify the model performance at each scale, and in several cases to determine the scale at which the model description of the data broke down. We detected significant changes in correlation between modelled and predicted emissions at each spatial scale, showing that, at some scales, model performance was not uniform in space. This suggested that the influence of a soil variable on N2O emissions, important in one region but not in another, had been omitted from the model or modelled poorly. Change points usually occurred at field boundaries or where soil textural class changed. We show that wavelet analysis can be used to quantify aspects of model performance that other methods cannot. By evaluating model behaviour at several scales and positions wavelet analysis helps us to determine whether a model is suitable for a particular purpose. [source] Soil structure and pedotransfer functionsEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 3 2003Y.A. Pachepsky Summary Accurate estimates of soil hydraulic properties from other soil characteristics using pedotransfer functions (PTFs) are in demand in many applications, and soil structural characteristics are natural candidates for improving PTFs. Soil survey provides mostly categorical data about soil structure. Many available characteristics such as bulk density, aggregate distribution, and penetration resistance reflect not only structural but also other soil properties. Our objective here is to provoke a discussion of the value of structural information in modelling water transport in soils. Two case studies are presented. Data from the US National Pedon Characterization database are used to estimate soil water retention from categorical field-determined structural and textural classes. Regression-tree estimates have the same accuracy as those from textural class as determined in the laboratory. Grade of structure appears to be a strong predictor of water retention at ,33 kPa and ,1500 kPa. Data from the UNSODA database are used to compare field and laboratory soil water retention. The field-measured retention is significantly less than that measured in the laboratory for soils with a sand content of less than 50%. This could be explained by Rieu and Sposito's theory of scaling in soil structure. Our results suggest a close relationship between structure observed at the soil horizon scale and structure at finer scales affecting water retention of soil clods. Finally we indicate research needs, including (i) quantitative characterization of the field soil structure, (ii) an across-scale modelling of soil structure to use fine-scale data for coarse-scale PTFs, (iii) the need to understand the effects of soil structure on the performance of various methods available to measure soil hydraulic properties, and (iv) further studies of ways to use soil,landscape relationships to estimate variations of soil hydraulic properties across large areas of land. [source] Spatial abundance structures in an assemblage of gall-forming sawfliesJOURNAL OF ANIMAL ECOLOGY, Issue 3 2004M. A. McGeoch Summary 1Examination of the fine-scale internal structure of species geographical ranges, and interspecific variation therein across landscapes, contributes to a more comprehensive understanding of the structure of geographical ranges. Two components of this internal structure that require further examination are the occurrence, extent and position of spatial autocorrelation, and relationships between the spatial abundance structures of closely related, ecologically similar species. 2Here we compare the abundance structures of an assemblage of gall-forming sawflies (Tenthredinidae) across a landscape. We identify the relative roles of spatial and non-spatial factors in explaining their abundance structures and test the hypothesis that sawfly density is explained by host plant quality, as has been demonstrated repeatedly at finer scales. We use these results to distinguish between alternative sets of mechanisms that may be operating at the landscape scale. 3Species densities were mainly multimodal across the landscape and significantly spatially structured, with patch, periodic and trend components. The abundance structures thus mimic those found generally for species across the full extent of their geographical ranges. 4Many abundance structure characteristics were unique to species, with differences in their correlogram profiles, distances over which densities were positively autocorrelated, and the absence of significant spatial structure in one species. 5In contrast to previous, fine-scale studies, host plant quality explained little of the variation in sawfly gall density across the landscape, whereas unexplained spatial structure contributed between 30% and 50%. Based on knowledge of the biology of these species and the absence of competitive interactions, species dispersal characteristics and the Moran effect are suggested as probable alternative hypotheses at this scale. 6Therefore, a spatial approach has identified the hierarchical nature of mechanisms underlying the population dynamics of this sawfly assemblage for the first time. Furthermore, it has highlighted the importance of spatial processes in explaining the densities of species at the landscape scale, as well as the individualistic nature of their abundance structures. [source] Fine-scale natal homing and localized movement as shaped by sex and spawning habitat in Chinook salmon: insights from spatial autocorrelation analysis of individual genotypesMOLECULAR ECOLOGY, Issue 14 2006H. M. NEVILLE Abstract Natal homing is a hallmark of the life history of salmonid fishes, but the spatial scale of homing within local, naturally reproducing salmon populations is still poorly understood. Accurate homing (paired with restricted movement) should lead to the existence of fine-scale genetic structuring due to the spatial clustering of related individuals on spawning grounds. Thus, we explored the spatial resolution of natal homing using genetic associations among individual Chinook salmon (Oncorhynchus tshawytscha) in an interconnected stream network. We also investigated the relationship between genetic patterns and two factors hypothesized to influence natal homing and localized movements at finer scales in this species, localized patterns in the distribution of spawning gravels and sex. Spatial autocorrelation analyses showed that spawning locations in both sub-basins of our study site were spatially clumped, but the upper sub-basin generally had a larger spatial extent and continuity of redd locations than the lower sub-basin, where the distribution of redds and associated habitat conditions were more patchy. Male genotypes were not autocorrelated at any spatial scale in either sub-basin. Female genotypes showed significant spatial autocorrelation and genetic patterns for females varied in the direction predicted between the two sub-basins, with much stronger autocorrelation in the sub-basin with less continuity in spawning gravels. The patterns observed here support predictions about differential constraints and breeding tactics between the two sexes and the potential for fine-scale habitat structure to influence the precision of natal homing and localized movements of individual Chinook salmon on their breeding grounds. [source] |