Home About us Contact | |||
Finer Particles (finer + particle)
Selected AbstractsWind erosion characteristics of Sahelian surface typesEARTH SURFACE PROCESSES AND LANDFORMS, Issue 12 2010Thomas Maurer Abstract The assessment of wind erosion magnitudes for a given area requires knowledge of wind erosion susceptibilities of the dominant local surface types. Relative wind erosion potentials of surfaces can hardly be compared under field conditions, as each erosion event is unique in terms of duration, intensity and extent. The objective of this study was to determine and compare relative wind erosion potentials of the most representative surface types over a transect comprising most parts of southwestern Niger. For this purpose, mobile wind tunnel experiments were run on 26 dominant surface types. The effects of surface disturbance were additionally determined for 13 of these surfaces. The results, namely measurements of wind fields and mass fluxes, can be classified according to specific surface characteristics. Three basic surface groups with similar emission behaviour and aerodynamic characteristics were identified: (1) sand surfaces, (2) rough stone surfaces and (3) flat crusted surfaces. Sand surfaces feature a turbulent zone close to the surface due to the development of a saltation layer. Their surface roughness is medium to high, as a consequence of the loss of kinetic energy of the wind field to saltating particles. Sand surfaces show the highest mass fluxes due to the abundance of loose particles, but also fairly high PM10 fluxes, as potential dust particles are not contained in stable crusts or aggregates. Rough stone surfaces, due to their fragmented and irregular surface, feature the highest surface roughness and the most intense turbulence. They are among the weakest emitters but, due to their relatively high share of potential dust particles, PM10 emissions are still average. Flat crusted surfaces, in contrast, show low turbulence and the lowest surface roughness. This group of surfaces shows rather heterogeneous mass fluxes, which range from moderate to almost zero, although the share of PM10 particles is always relatively high. Topsoil disturbance always results in higher total and PM10 emissions on sand surfaces and also on flat crusted surfaces. Stone surfaces regularly exhibit a decrease in emission after disturbance, which can possibly be attributed to a reorganization which protects finer particles from entrainment. The results are comparable with field studies of natural erosion events and similar wind tunnel field campaigns. The broad range of tested surfaces and the standardized methodology are a precondition for the future regionalization of the experimental point data. Copyright © 2010 John Wiley & Sons, Ltd. [source] Hydrological and erosional response to natural rainfall in a semi-arid area of south-east SpainHYDROLOGICAL PROCESSES, Issue 4 2001M. Martinez-Mena Abstract A better knowledge of soil erosion by water is essential for planning effective soil and water conservation practices in semi-arid Mediterranean environments. The special climatic and hydrological characteristics of these areas, however, make accurate soil loss predictions difficult, particularly in the absence of minimal data. Two zero-order experimental microcatchments (328,759 m2), representative of an extensive semi-arid watershed with a high potential erosion risk in the south-east of Spain, were selected and monitored for 3 years (1991,93) in order to provide information on the hydrological and erosional response. A pluviogram and hydrograph recorded data at 1-min intervals during each storm, after which the soil loss was collected and the particle size of the sediment was analysed. Runoff coefficients of about 9% and soil losses of between 84·83 and 298·9 g m,2 year,1 were observed in the area. Rapid response times (geometric mean values lower than 2 h) and low runoff thresholds (mean values between 3·5 to 5·9 mm) were the norm in the experimental areas. A rain intensity of over 15 mm h,1 was considered as ,erosive rainfall' in these areas because of the total soil loss and the transport capacity of the overland flow. Differences in pore-size distribution explained the different hydrological responses observed between areas. The erosional response was more complex and basically seemed to be determined by soil aggregate stability and topographical properties. A greater proportion of finer particles in the eroded material than in the soil matrix indicated selective erosion and the transport of finer material. Copyright © 2001 John Wiley & Sons, Ltd. [source] Transient fluidization and segregation of binary mixtures of particlesAICHE JOURNAL, Issue 11 2000A. Marzocchella Fluidization of binary mixtures of particles belonging to group B of the Geldart classification of powders was studied. Beds tested were prepared by mixing in different proportions particles with almost equal density (,2,500 kg/m3) and dissimilar size (125 ,m silica sand and 500 ,m glass beads). Experiments were carried out using a segmented fluidization column equipped with multiple pressure transducers. Experimental procedures included continuous monitoring of pressure drop at different locations along the bed during quasi-steady or stepwise changes of gas superficial velocity, and characterization of particle-size distributions in each segment of the fluidization column after fluidization of the bed for given times. Three ranges of gas superficial velocity were recognized for each solids mixture. At low velocity the bed behaves as a fixed bed. At high velocity, it is fully and steadily fluidized. In an intermediate velocity range, transient fluidization takes place: an initially uniform fluidized bed eventually undergoes segregation, giving rise to a defluidized bottom layer rich in the coarser solids and to a "supernatant" fluidized layer where finer particles prevail. The thresholds between these velocity ranges are rather sharp and were characterized as functions of initial bed composition. Rates at which the defluidized solids layer builds up from initially uniform beds, and the ultimate compositions of the defluidized bottom and fluidized top layers are characterized for beds with different compositions at variable gas superficial velocity. [source] Sedimentation of Soils from Three Physiographic Regions of Alabama at Different SalinitiesJOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 4 2009Gulnihal Ozbay This study evaluated the rate of sedimentation from water under various salinities, over a time period of 72 h. The particles come from soils that are commonly found in shrimp growing areas of Alabama: Black Belt Prairie, Piedmont Plateau, and Upper Coastal Plain. Different salinity treatments and settling times resulted in significant differences (P, 0.05) in the reduction of turbidity and TSS for each soil type. Solutions containing 2 ppt salinity had a similar rate of turbidity reduction as the solutions with 5, 10, or greater ppt treatments. Concentrations of turbidity and TSS decreased rapidly between 1 and 12 h of sedimentation; very little decline was observed during the time intervals 12,72 h. Higher salinity treatments yielded settling patterns similar to the 2 ppt salinity treatment. After 1 h, turbidity was removed by 65% in the control compared with 85% salinity treated samples. Variations in turbidity and TSS among the three sediments suggest that finer particles, the Piedmont Plateau soils, settled at a slower rate than larger particles. This difference occurs because the percentage of turbidity and TSS removed was significantly higher in mineralized waters compared to freshwater. Therefore, a small amount of salt, 2 ppt, can be used in pond aquaculture treatments to reduce the turbidity and TSS concentrations in shrimp ponds. [source] |