Fine Root Longevity (fine + root_longevity)

Distribution by Scientific Domains


Selected Abstracts


Uncertainties in interpretation of isotope signals for estimation of fine root longevity: theoretical considerations

GLOBAL CHANGE BIOLOGY, Issue 7 2003
YIQI LUOArticle first published online: 25 JUN 200
Abstract This paper examines uncertainties in the interpretation of isotope signals when estimating fine root longevity, particularly in forests. The isotope signals are depleted ,13C values from elevated CO2 experiments and enriched ,14C values from bomb 14C in atmospheric CO2. For the CO2 experiments, I explored the effects of six root mortality patterns (on,off, proportional, constant, normal, left skew, and right skew distributions), five levels of nonstructural carbohydrate (NSC) reserves, and increased root growth on root ,13C values after CO2 fumigation. My analysis indicates that fitting a linear equation to ,13C data provides unbiased estimates of longevity only if root mortality follows an on,off model, without dilution of isotope signals by pretreatment NSC reserves, and under a steady state between growth and death. If root mortality follows the other patterns, the linear extrapolation considerably overestimates root longevity. In contrast, fitting an exponential equation to ,13C data underestimates longevity with all the mortality patterns except the proportional one. With either linear or exponential extrapolation, dilution of isotope signals by pretreatment NSC reserves could result in overestimation of root longevity by several-fold. Root longevity is underestimated if elevated CO2 stimulates fine root growth. For the bomb 14C approach, I examined the effects of four mortality patterns (on,off, proportional, constant, and normal distribution) on root ,14C values. For a given ,14C value, the proportional pattern usually provides a shorter estimate of root longevity than the other patterns. Overall, we have to improve our understanding of root growth and mortality patterns and to measure NSC reserves in order to reduce uncertainties in estimated fine root longevity from isotope data. [source]


Estimating Fine Root Turnover in Tropical Forests along an Elevational Transect using Minirhizotrons

BIOTROPICA, Issue 5 2008
Sophie Graefe
ABSTRACT Growth and death of fine roots represent an important carbon sink in forests. Our understanding of the patterns of fine root turnover is limited, in particular in tropical forests, despite its acknowledged importance in the global carbon cycle. We used the minirhizotron technique for studying the changes in fine root longevity and turnover along a 2000-m-elevational transect in the tropical mountain forests of South Ecuador. Fine root growth and loss rates were monitored during a 5-mo period at intervals of four weeks with each 10 minirhizotron tubes in three stands at 1050, 1890, and 3060 m asl. Average root loss rate decreased from 1.07 to 0.72 g/g/yr from 1050 to 1890 m, indicating an increase in mean root longevity with increasing elevation. However average root loss rate increased again toward the uppermost stand at 3060 m (1.30 g/g/yr). Thus, root longevity increased from lower montane to mid-montane elevation as would be expected from an effect of low temperature on root turnover, but it decreased further upslope despite colder temperatures. We suggest that adverse soil conditions may reduce root longevity at high elevations in South Ecuador, and are thus additional factors besides temperature that control root dynamics in tropical mountain forests. [source]