Home About us Contact | |||
Filtering Error System (filtering + error_system)
Selected AbstractsRobust H, filtering for switched linear discrete-time systems with polytopic uncertaintiesINTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, Issue 6 2006Lixian Zhang Abstract In this paper, the problem of robust H, filtering for switched linear discrete-time systems with polytopic uncertainties is investigated. Based on the mode-switching idea and parameter-dependent stability result, a robust switched linear filter is designed such that the corresponding filtering error system achieves robust asymptotic stability and guarantees a prescribed H, performance index for all admissible uncertainties. The existence condition of such filter is derived and formulated in terms of a set of linear matrix inequalities (LMIs) by the introduction of slack variables to eliminate the cross coupling of system matrices and Lyapunov matrices among different subsystems. The desired filter can be constructed by solving the corresponding convex optimization problem, which also provides an optimal H, noise-attenuation level bound for the resultant filtering error system. A numerical example is given to show the effectiveness and the potential of the proposed techniques. Copyright © 2006 John Wiley & Sons, Ltd. [source] Gain-scheduled H, filtering of parameter-varying systemsINTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 8 2006Shaosheng Zhou Abstract This paper deals with the gain-scheduled H, filtering problem for a class of parameter-varying systems. A sufficient condition for the existence of a gain-scheduled filter, which guarantees the asymptotic stability with an H, noise attenuation level bound for the filtering error system, is given in terms of a finite number of linear matrix inequalities (LMIs). The filter is designed to be parameter-varying and have a nonlinear fractional transformation structure. A numerical example is presented to demonstrate the application of the proposed method. Copyright © 2006 John Wiley & Sons, Ltd. [source] Design of robust non-fragile H, filters for uncertain neutral stochastic systems with distributed delays,ASIAN JOURNAL OF CONTROL, Issue 1 2010Bo Song Abstract This paper deals with the problem of robust non-fragile H, filtering for neutral stochastic systems with distributed delays and norm-bounded parameter uncertainties. Attention is focused on the design of a filter which is subject to gain variations, such that the filtering error system is robustly stochastically stable with a prescribed H, performance level for all admissible uncertainties. A delay-dependent sufficient condition for the solvability of this problem is obtained in terms of a linear matrix inequality. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society [source] Exponential H, filtering for switched linear systems with interval time-varying delayINTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 5 2009Dong Wang Abstract This paper deals with the problem of exponential H, filtering for a class of continuous-time switched linear system with interval time-varying delay. The time delay under consideration includes two cases: one is that the time delay is differentiable and bounded with a constant delay-derivative bound, whereas the other is that the time delay is continuous and bounded. Switched linear filters are designed to ensure that the filtering error systems under switching signal with average dwell time are exponentially stable with a prescribed H, noise attenuation level. Based on the free-weighting matrix approach and the average dwell technology, delay-dependent sufficient conditions for the existence of such a filter are derived and formulated in terms of linear matrix inequalities (LMIs). By solving that corresponding LMIs, the desired filter parameterized matrices and the minimal average dwell time are obtained. Finally, two numerical examples are presented to demonstrate the effectiveness of the developed results. Copyright © 2008 John Wiley & Sons, Ltd. [source] |