Home About us Contact | |||
Filter Strips (filter + strip)
Selected AbstractsCOST EFFECTIVENESS OF VEGETATIVE FILTER STRIPS AND INSTREAM HALF-LOGS FOR ECOLOGICAL RESTORATION,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 5 2006Emmanuel A. Frimpong ABSTRACT: This paper presents the results of cost effectiveness (CE) analysis of vegetative filter strips (VFS) and instream half-logs as tools for recovering scores on a fish Index of Biotic Integrity (IBI) in the upper Wabash River watershed (UW) in Indiana. Three assumptions were made about recovery time for IBI scores (5,15, and 30 years) and social discount rates (1, 3, and 5 percent), which were tested for sensitivity of the estimated CE ratios. Effectiveness of VFS was estimated using fish IBIs and riparian forest cover from 49 first-order to fifth-order stream reaches. Half-log structures had been installed for approximately two years in the UW prior to the study and provided a basis for estimates of cost and maintenance. Cost effectiveness ratios for VFS decreased from $387 to $277 per 100 m for a 1 percent increase in IBI scores from first-to fifth-order streams with 3 percent discount and 30-year recovery. This cost weighted by proportion of stream orders was $360. The ratio decreased with decreasing time of recovery and discount rate. Based on installation costs and an assumption of equal recovery rates, half-logs were two-thirds to one-half as cost-effective as VFS. Half-logs would be a cost-effective supplement to VFS in low order streams if they can be proven to recover IBI scores faster than VFS do. This study provides baseline data and a framework for planning and determining the cost of stream restoration. [source] Runoff generation from logged and burnt convergent hillslopes: rainfall simulation and modellingHYDROLOGICAL PROCESSES, Issue 5 2004Patrick N. J. Lane Abstract This paper reports results from field experiments and hydrological modelling on the dynamics of runoff generation in highly convergent parts of the landscape in a logged and burnt eucalypt forest in south-eastern Victoria, Australia. Large-scale rainfall simulation experiments were conducted to explore runoff generating mechanisms from harvested areas, and to assess the effectiveness of standard water quality protective measures, here a disturbed filter strip, in preventing accession of sediment to near-stream areas. We then examined the likely effects of varying antecedent moisture conditions on surface and subsurface runoff generating mechanisms. Very small volumes of surface runoff were generated only at very high rainfall intensity rates that exceeded a 100 year recurrence interval event during the simulated experiments. There was little or no identifiable impact of either compaction from logging operations or fire-induced hydrophobicity on surface infiltration or generation of surface runoff. Measured soil hydraulic properties and soil depths explained the paucity of surface runoff, and the dominance of subsurface storm flow as the prime runoff generating mechanism. Deep lateral subsurface flow was observed from the cut-face of a fire access track and into a streamhead downslope of the experimental plots. Water balance modelling using Topog_Dynamic indicated the conditions under which saturated overland flow in this environment could be generated are rare, but that care should be taken in siting of roads and tracks in lower parts of convergent landscapes. Copyright © 2004 John Wiley & Sons, Ltd. [source] Runoff transport of faecal coliforms and phosphorus released from manure in grass buffer conditionsLETTERS IN APPLIED MICROBIOLOGY, Issue 3 2005W.L. Stout Abstract Aims:, To test the hypothesis that faecal coliform (FC) and phosphorus (P) are transported similarly in surface runoff through the vegetative filter strip after being released from land-applied manure. Methods and Results:, The Hagerstown soil was packed into boxes that were 10 cm deep, 30 cm wide and 100, 200 or 300 cm long. Grass was grown in boxes prior experiments. Same-length boxes were placed under rainfall simulator and tilted to have with either 2% or 4% slopes. Dairy manure was broadcast on the upper 30-cm section. Rainfall was simulated and runoff samples were collected and analysed for Cl, FC and total phosphorus (TP). Mass recovery, the concentration decrease rate k, and the ratio FC : TP showed that there was a consistent relationship between FC and TP in runoff. Conclusion:, The FC and TP transport through simulated vegetated buffer strips were highly correlated. Significance and Impact of the Study:, As a knowledge base on the effect of the environmental parameters on P transport in vegetated buffer strips is substantially larger than for manure-borne bacteria, the observed similarity may enhance ability to assess the efficiency of the vegetated buffer strips in retention of FC currently used as indicator organisms for manure-borne pathogens. [source] Enhancing the P trapping of pasture filter strips: successes and pitfalls in the use of water supply residue and polyacrylamideEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 2 2008M. R. Redding Summary In intensive pastoral systems the landscape at ground level is clad in dense, filtering vegetation , yet phosphorus losses in overland flow do occur, and pollution of surface waters is a serious consequence. The use of pre-applied polyacrylamide (PAM) or chitosan to trap particulate phosphorus (PP) and P-sorbing potable water treatment alum residue (PWTR) to enhance vegetative filtering effects is examined here using field and laboratory overland flow simulation (flows from 0.43 to 0.34 litres s,1 (m width),1) and analysis. Fitted equations suggest that up to 40% of dissolved reactive P applied (0.75 mg P litre,1) in overland flow could be captured in a flow length of 2.1 m (1 kg PWTR m,2). Unfortunately, drying decreased PWTR effectiveness, though little of the P captured was readily desorbed. This effect did not appear to be the result of gibbsite formation. Compared with the other treatments, there was a strong treatment effect of pre-applied PAM on the change in PP losses (P < 0.001) over time, though evidence suggests the PAM effect declined during a 44 minute flow period. We showed that the investigated two-pronged approach to the enhancement of the effectiveness of P trapping by pasture had limitations. Laboratory sheet-flow simulations suggest that a field-stable P sorber with sorption characteristics similar to those of the un-dried PWTR could be an effective retention enhancer for dissolved P. Pre-applied PAM can have an effect on particulate-P trapping but was rapidly dissolved and removed by flow. [source] The use of riparian vegetated filter strips to reduce river sediment loads: an overestimated control measure?HYDROLOGICAL PROCESSES, Issue 20 2006Gert Verstraeten Abstract The spatially distributed soil erosion and sediment delivery model WATEM/SEDEM was used to simulate the impact of riparian vegetated filter strips (RVFSs) on river sediment delivery at different spatial scales. For a field plot with a straight slope, sediment reduction by the RVFSs is comparable to results obtained through experimental set-ups elsewhere (i.e. >70%). However, at the scale of an entire catchment, sediment reduction is much less (i.e. ±20%) due to (1) overland flow convergence, which reduces the sediment trapping efficiency of an RVFS, and (2) because part of the sediment bypasses the RVFSs through ditches, sewers and road surfaces. These results suggest that, at the catchment scale, RVFSs should be accompanied with other conservation techniques that are more appropriate for reducing river sediment loads, and that also reduce on-site soil erosion. Copyright © 2006 John Wiley & Sons, Ltd. [source] Validation of a vegetated filter strip model (VFSMOD)HYDROLOGICAL PROCESSES, Issue 5 2001Dr Majed Abu-Zreig Abstract Vegetated filter strips (VFS) are designed to reduce sediment load and other pollutants into water bodies. However, adaptation of VFS in the field has been limited owing to lack of data about their efficiency and performance under natural field conditions. A number of models are available that simulate sediment transport and trapping in VFS, but there is a general lack of confidence in VFS models owing to limited validation studies and model limitations that prevent correct application of these models under field conditions. The objective of this study is to test and validate a process-based model (VFSMOD) that simulates sediment trapping in VFS. This model links three submodels: modified Green,Ampt's infiltration, Quadratic overland flow submodel based on kinematic wave approximation and University of Kentucky sediment filtration model. A total of 20 VFS, 2, 5, 10 and 15 m long and with various vegetation covers, were tested under simulated sediment and runoff conditions. The results of these field experiments were used to validate the VFS model. The model requires 25 input parameters distributed over five input files. All input parameters were either measured or calculated using experimental data. The observed sediment trapping efficiencies varied from 65% in the 2-m long VFS to 92% in the 10-m long filters. No increase in sediment removal efficiency was observed at higher VFS length. Application of the VFS model to experimental data was satisfactory under the condition that actual flow widths are used in the model instead of the total filter width. Predicted and observed sediment trapping efficiencies and infiltration volume fitted very well, with a coefficient of determination (R2) of 0·9 and 0·95, respectively. Regression analyses revealed that the slope and intercept of the regression lines between predicted versus observed infiltration volume and trapping efficiency were not significantly different than the line of perfect agreement with a slope of 1·0 and intercept of 0·0. Copyright © 2001 John Wiley & Sons, Ltd. [source] Bone resorbing activity and cytokine levels in gingival crevicular fluid before and after treatment of periodontal diseaseJOURNAL OF CLINICAL PERIODONTOLOGY, Issue 6 2004Anders Holmlund Abstract Background: The aim of the present study was to investigate bone resorption activity (BRA), interleukin-1, (IL-1,), IL-1, and interleukin-1 receptor antagonist (IL-1ra) in gingival crevicular fluid (GCF) in sites with no signs of periodontol disease and in sites with horizontal or angular loss of periodontal bone. These assessments were performed before and after periodontal treatment. Methods: GCFs were collected from 10 individuals with filter strips from two healthy sites and four sites with deep pathological periodontal pockets, two of which showed horizontal bone loss and two with angular bone loss. All diseased pockets were treated with flap surgery and systemic Doxyferm®. Twelve months later GCF was collected again and treatment outcome evaluated. BRA in GCFs was assessed in a bone organ culture system by following the release of 45Ca from neonatal mouse calvariae. The amounts of IL-1,, IL-1, and IL-1ra in GCFs were quantified by enzyme-linked immunosorbent assay (ELISA). Results: Treatment resulted in reduction of pocket depths with 3.5±0.5 mm in sites with angular bone loss and 2.8±0.3 mm in sites with horizontal bone loss. Initially, BRA, IL-1,, IL-1, and IL-1ra were significantly higher in GCFs from diseased sites compared with healthy sites. No differences in BRA and cytokine levels were seen between GCFs from pockets with horizontal and angular bone losses. The levels of IL-1,, IL-1, and IL-1ra were significantly reduced after treatment of diseased pockets. Pocket depths were significantly correlated to BRA only in pre-treatment sites with angular bone loss. BRA was correlated to Il-1,, IL-1,, but not to IL-1ra, in diseased sites with angular bone loss, before and after treatment. The reductions of BRA in the individual sites, seen after treatment, were not correlated to the reductions of Il-1,, IL-1, or IL-1ra. Conclusions: These data show that BRA and cytokine levels are increased in GCFs from sites with periodontal disease and that periodontal treatment results in reduction of the cytokines. Our findings further indicate that IL-1, and IL-1, play important roles for the BRA present in GCFs, but that other factors also contribute to this activity. [source] Grass-Shrub Riparian Buffer Removal of Sediment, Phosphorus, and Nitrogen From Simulated Runoff,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 5 2007Kyle R. Mankin Abstract:, Riparian buffer forests and vegetative filter strips are widely recommended for improving surface water quality, but grass-shrub riparian buffer system (RBSs) are less well studied. The objective of this study was to assess the influence of buffer width and vegetation type on the key processes and overall reductions of total suspended solids (TSS), phosphorus (P), and nitrogen (N) from simulated runoff passed through established (7-year old) RBSs. Nine 1-m RBS plots, with three replicates of three vegetation types (all natural selection grasses, two-segment buffer with native grasses and plum shrub, and two-segment buffer with natural selection grasses and plum shrub) and widths ranging from 8.3 to 16.1 m, received simulated runoff having 4,433 mg/l TSS from on-site soil, 1.6 mg/l total P, and 20 mg/l total N. Flow-weighted samples were collected by using Runoff Sampling System (ROSS) units. The buffers were very efficient in removal of sediments, N, and P, with removal efficiencies strongly linked to infiltration. Mass and concentration reductions averaged 99.7% and 97.9% for TSS, 91.8% and 42.9% for total P, and 92.1% and 44.4% for total N. Infiltration alone could account for >75% of TSS removal, >90% of total P removal, and >90% of total N removal. Vegetation type induced significant differences in removal of TSS, total P, and total N. These results demonstrate that adequately designed and implemented grass-shrub buffers with widths of only 8 m provide for water quality improvement, particularly if adequate infiltration is achieved. [source] COST EFFECTIVENESS OF VEGETATIVE FILTER STRIPS AND INSTREAM HALF-LOGS FOR ECOLOGICAL RESTORATION,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 5 2006Emmanuel A. Frimpong ABSTRACT: This paper presents the results of cost effectiveness (CE) analysis of vegetative filter strips (VFS) and instream half-logs as tools for recovering scores on a fish Index of Biotic Integrity (IBI) in the upper Wabash River watershed (UW) in Indiana. Three assumptions were made about recovery time for IBI scores (5,15, and 30 years) and social discount rates (1, 3, and 5 percent), which were tested for sensitivity of the estimated CE ratios. Effectiveness of VFS was estimated using fish IBIs and riparian forest cover from 49 first-order to fifth-order stream reaches. Half-log structures had been installed for approximately two years in the UW prior to the study and provided a basis for estimates of cost and maintenance. Cost effectiveness ratios for VFS decreased from $387 to $277 per 100 m for a 1 percent increase in IBI scores from first-to fifth-order streams with 3 percent discount and 30-year recovery. This cost weighted by proportion of stream orders was $360. The ratio decreased with decreasing time of recovery and discount rate. Based on installation costs and an assumption of equal recovery rates, half-logs were two-thirds to one-half as cost-effective as VFS. Half-logs would be a cost-effective supplement to VFS in low order streams if they can be proven to recover IBI scores faster than VFS do. This study provides baseline data and a framework for planning and determining the cost of stream restoration. [source] WATER QUALITY MODELING OF ALTERNATIVE AGRICULTURAL SCENARIOS IN THE U.S. CORN BELT,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 3 2002Kellie B. Vaché ABSTRACT: Simulated water quality resulting from three alternative future land-use scenarios for two agricultural watersheds in central Iowa was compared to water quality under current and historic land use/land cover to explore both the potential water quality impact of perpetuating current trends and potential benefits of major changes in agricultural practices in the U.S. Corn Belt. The Soil Water Assessment Tool (SWAT) was applied to evaluate the effect of management practices on surface water discharge and annual loads of sediment and nitrate in these watersheds. The agricultural practices comprising Scenario 1, which assumes perpetuation of current trends (conversion to conservation tillage, increase in farm size and land in production, use of currently-employed Best Management Practices (BMPs)) result in simulated increased export of nitrate and decreased export of sediment relative to the present. However, simulations indicate that the substantial changes in agricultural practices envisioned in Scenarios 2 and 3 (conversion to conservation tillage, strip intercropping, rotational grazing, conservation set-asides and greatly extended use of best management practices (BMPs) such as riparian buffers, engineered wetlands, grassed waterways, filter strips and field borders) could potentially reduce current loadings of sediment by 37 to 67 percent and nutrients by 54 to 75 percent. Results from the study indicate that major improvements in water quality in these agricultural watersheds could be achieved if such environmentally-targeted agricultural practices were employed. Traditional approaches to water quality improvement through application of traditional BMPs will result in little or no change in nutrient export and minor decreases in sediment export from Corn Belt watersheds. [source] |