Film Transistors (film + transistor)

Distribution by Scientific Domains

Kinds of Film Transistors

  • thin film transistor


  • Selected Abstracts


    Hysteresis in Conjugated Polymer Thin Film Transistors Generated by Chain Relaxation

    ADVANCED FUNCTIONAL MATERIALS, Issue 6 2010
    Neng-Jye Yang
    Abstract The hysteresis phenomenon in a polymer thin film transistor (PTFT) with either poly(3-hexylthiophene), poly(3-dodecylthiophene), or poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene] is investigated over a wide range of temperatures, and found to be generated by the delay in main chain ring distortion with an applied electric field. In the temperature range for side chain relaxation, main chain motion induced by side chain motion already starts such that polarization of the main chain by the applied electric field is permitted but in a limited extent and is not in phase with the variation in electric field. In the main chain relaxation temperature range, the extent of segmental motion increases, which leads to the main chain being more realignable by the applied electric field and thus a reduced hysteresis. After main chain relaxation is complete, the ring can distort more freely and chain segments are able to realign in phase with the applied electric field, which leads to a leveling off of the hysteresis. This investigation shows for first time that the chain relaxation in conjugated polymers is the origin of the hysteresis in PTFT devices. [source]


    A Densely and Uniformly Packed Organic Semiconductor Based on Annelated , -Trithiophenes for High-Performance Thin Film Transistors

    ADVANCED FUNCTIONAL MATERIALS, Issue 2 2009
    Lin Tan
    Abstract A novel semiconductor based on annelated , -trithiophenes is presented, possessing an extraordinary compressed packing mode combining edge-to-face ,,, interactions and S,S interactions in single crystals, which is favorable for more effective charge transporting. Accordingly, the device incorporating this semiconductor shows remarkably high charge carrier mobility, as high as 0.89,cm2,V,1,s,1, and an on/off ratio of 4.6,×,107 for vacuum-deposited thin films. [source]


    Organic Thin Film Transistors with Polymer Brush Gate Dielectrics Synthesized by Atom Transfer Radical Polymerization

    ADVANCED FUNCTIONAL MATERIALS, Issue 1 2008
    C. Pinto
    Abstract Low operating voltage is an important requirement that must be met for industrial adoption of organic field-effect transistors (OFETs). We report here solution fabricated polymer brush gate insulators with good uniformity, low surface roughness and high capacitance. These ultra thin polymer films, synthesized by atom transfer radical polymerization (ATRP), were used to fabricate low voltage OFETs with both evaporated pentacene and solution deposited poly(3-hexylthiophene). The semiconductor-dielectric interfaces in these systems were studied with a variety of methods including scanning force microscopy, grazing incidence X-ray diffraction and neutron reflectometry. These studies highlighted key differences between the surfaces of brush and spun cast polymethyl methacrylate (PMMA) films. [source]


    Orders-of-Magnitude Reduction of the Contact Resistance in Short-Channel Hot Embossed Organic Thin Film Transistors by Oxidative Treatment of Au-Electrodes,

    ADVANCED FUNCTIONAL MATERIALS, Issue 15 2007
    B. Stadlober
    Abstract In this study we report on the optimization of the contact resistance by surface treatment in short-channel bottom-contact OTFTs based on pentacene as semiconductor and SiO2 as gate dielectric. The devices have been fabricated by means of nanoimprint lithography with channel lengths in the range of 0.3,,m,<,L,<,3.0,,m. In order to reduce the contact resistance the Au source- and drain-contacts were subjected to a special UV/ozone treatment, which induced the formation of a thin AuOx layer. It turned out, that the treatment is very effective (i),in decreasing the hole-injection barrier between Au and pentacene and (ii),in improving the morphology of pentacene on top of the Au contacts and thus reducing the access resistance of carriers to the channel. Contact resistance values as low as 80,,,cm were achieved for gate voltages well above the threshold. In devices with untreated contacts, the charge carrier mobility shows a power-law dependence on the channel length, which is closely related to the contact resistance and to the grain-size of the pentacene crystallites. Devices with UV/ozone treated contacts of very low resistance, however, exhibit a charge carrier mobility in the range of 0.3,cm2,V,1,s,1,<,,,<,0.4,cm2,V,1,s,1 independent of the channel length. [source]


    ChemInform Abstract: Anthraquinone Derivatives (I) Affording n-Type Organic Thin Film Transistors.

    CHEMINFORM, Issue 33 2009
    Masashi Mamada
    Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source]


    Fabrication and evaluation of complementary logic circuits using zinc oxide and pentacene thin film transistor

    ELECTRONICS & COMMUNICATIONS IN JAPAN, Issue 9 2009
    Hiroyuki Iechi
    Abstract We fabricated hybrid complementary inverters with n-channel zinc oxide (ZnO) transistors as the n-type inorganic material and p-channel organic transistors using pentacene as the p-type organic material. The complementary inverter exhibited a large voltage gain of 10 to 12 and a cutoff frequency of 0.5 kHz. ZnO thin film transistors show n-type semiconducting properties having field-effect mobility of 2.1×10,3 cm2/Vs. On the other hand, pentacene thin film transistors show p-type semiconducting properties having field-effect mobility of 3.2×10,2 cm2/Vs. We describe basic charge transfer characteristics of ZnO thin films. The results obtained here demonstrate that it is important for the transistor using ZnO to be injected charge from electrode to semiconducting material effectively. © 2009 Wiley Periodicals, Inc. Electron Comm Jpn, 92(9): 36,42, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecj.10085 [source]


    Hysteresis in Conjugated Polymer Thin Film Transistors Generated by Chain Relaxation

    ADVANCED FUNCTIONAL MATERIALS, Issue 6 2010
    Neng-Jye Yang
    Abstract The hysteresis phenomenon in a polymer thin film transistor (PTFT) with either poly(3-hexylthiophene), poly(3-dodecylthiophene), or poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene] is investigated over a wide range of temperatures, and found to be generated by the delay in main chain ring distortion with an applied electric field. In the temperature range for side chain relaxation, main chain motion induced by side chain motion already starts such that polarization of the main chain by the applied electric field is permitted but in a limited extent and is not in phase with the variation in electric field. In the main chain relaxation temperature range, the extent of segmental motion increases, which leads to the main chain being more realignable by the applied electric field and thus a reduced hysteresis. After main chain relaxation is complete, the ring can distort more freely and chain segments are able to realign in phase with the applied electric field, which leads to a leveling off of the hysteresis. This investigation shows for first time that the chain relaxation in conjugated polymers is the origin of the hysteresis in PTFT devices. [source]


    High K Capacitors and OFET Gate Dielectrics from Self-Assembled BaTiO3 and (Ba,Sr)TiO3 Nanocrystals in the Superparaelectric Limit

    ADVANCED FUNCTIONAL MATERIALS, Issue 4 2010
    Limin Huang
    Abstract Nanodielectrics is an emerging field with applications in capacitors, gate dielectrics, energy storage, alternatives to Li-ion batteries, and frequency modulation in communications devices. Self-assembly of high k dielectric nanoparticles is a highly attractive means to produce nanostructured films with improved performance,namely dielectric tunability, low leakage, and low loss,as a function of size, composition, and structure. One of the major challenges is conversion of the nanoparticle building block into a reliable thin film device at conditions consistent with integrated device manufacturing or plastic electronics. Here, the development of BaTiO3 and (Ba,Sr)TiO3 superparaelectric uniform nanocrystal (8,12,nm) films prepared at room temperature by evaporative driven assembly with no annealing step is reported. Thin film inorganic and polymer composite capacitors show dielectric constants in the tunable range of 10,30, dependent on composition, and are confirmed to be superparaelectric. Organic thin film transistor (TFT) devices on flexible substrates demonstrate the readiness of nanoparticle-assembled films as gate dielectrics in device fabrication. [source]


    Synthesis and properties of new dialkoxyphenylene quinoxaline-based donor-acceptor conjugated polymers and their applications on thin film transistors and solar cells

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 3 2009
    Mei-Hsiu Lai
    Abstract Synthesis, properties, and optoelectronic device applications of four new bis-[4-(2-ethyl-hexyloxy)-phenyl]quinoxaline(Qx(EHP))-based donor-acceptor conjugated copolymers are reported, in which the donors are thiophene(T), dithiophene(DT), dioctylfluorene(FO), and didecyloxyphenylene(OC10). The optical band gaps (Eg) of PThQx(EHP), PDTQ(EHP), POC10DTQ(EHP), and PFODTQ(EHP) estimated from the onset absorption are 1.57, 1.65, 1.77, and 1.92 eV, respectively. The smallest Eg of PThQx(EHP) among the four copolymers is attributed to the balanced donor/acceptor ratio and backbone coplanarity, leading to a strong intramolecular charge transfer. The hole mobilities obtained from the thin film transistor (TFT) devices of PThQx(EHP), PDTQ(EHP), POC10DTQ(EHP), and PFODTQ(EHP) are 2.52 × 10,4, 4.50 × 10,3, 4.72 × 10,5, and 9.31 × 10,4 cm2 V,1 s,1, respectively, with the on-off ratios of 2.00 × 104, 1.89 × 103, 4.07 × 103, and 2.30 × 104. Polymer solar cell based on the polymer blends of PFODTQ(EHP), PThQx(EHP), POC10DTQ(EHP), and PDTQ(EHP) with [6, 6]-phenyl C61-butyric acid methyl ester (PCBM) under illumination of AM1.5 (100 mW cm,2) solar simulator exhibit power conversion efficiencies of 1.75, 0.92, 0.79, and 0.43%, respectively. The donor/acceptor strength, molecular weight, miscibility, and energy level lead to the difference on the TFT or solar cell characteristics. The present study suggests that the prepared bis[4-(2-ethyl-hexyloxy)-phenyl]quinoxaline donor-acceptor conjugated copolymers would have promising applications on electronic device applications. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 973,985, 2009 [source]


    Optoelectronic properties of transparent p-type semiconductor CuxS thin films

    PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 7 2010
    P. Parreira
    Abstract Nowadays, among the available transparent semiconductors for device use, the great majority (if not all) have n-type conductivity. The fabrication of a transparent p-type semiconductor with good optoelectronic properties (comparable to those of n-type: InOx, ITO, ZnOx or FTO) would significantly broaden the application field of thin films. However, until now no material has yet presented all the required properties. Cu2S is a p-type narrow-band-gap material with an average optical transmittance of about 60% in the visible range for 50,nm thick films. However, due to its high conductivity at room temperature, 10,nm in thickness seems to be appropriate for device use. Cu2S thin films with 10,nm in thickness have an optical visible transmittance of about 85% rendering them as very good candidates for transparent p-type semiconductors. In this work CuxS thin films were deposited on alkali-free (AF) glass by thermal evaporation. The objective was not only the determination of its optoelectronic properties but also the feasibility of an active layer in a p-type thin film transistor. In our CuxS thin films, p-type high conductivity with a total visible transmittance of about 50% have been achieved. [source]


    Preparation of ZnO thin films by MO-CVD method using bis(acetylacetonato) zinc(II) anhydrate fiber

    PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 6 2010
    Shigeyuki Seki
    Abstract The MO-CVD method as a deposition process corresponding to the mass production of the high-quality ZnO film that can be used as an active layer in the thin film transistor is paid to attention. Bis(acetylacetonato) zinc(II) (Zn(acac)2) which has chemical stability and low toxicity is promising as the inexpensive raw material for CVD. The problem includes (1) pollution with water in process by character to easily take water of crystallization, and (2) the supply of the gas-phase raw material by sublimation should be not able to be controlled easily because it is a fine particle. In this study, Zn(acac)2 anhydrate fiber was prepared from Zn(acac)2 monohydrate powder by the sublimation process. Melting point of this fiber was almost same (,134 °C) as the monohydrate powder in N2 atmosphere. ZnO film was deposited on r-face sapphire substrate by MO-CVD process using Zn(acac)2 anhydrate fiber, successfully. RMS of the film flatness was 0.48 nm. This film had resistivity of 4.6 × 10,1 ,·cm, carrier electron density of 9.1 × 1017 cm,3 and Hall mobility of 15 cm2·V,1·s,1. (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Fabrication and evaluation of complementary logic circuits using zinc oxide and pentacene thin film transistor

    ELECTRONICS & COMMUNICATIONS IN JAPAN, Issue 9 2009
    Hiroyuki Iechi
    Abstract We fabricated hybrid complementary inverters with n-channel zinc oxide (ZnO) transistors as the n-type inorganic material and p-channel organic transistors using pentacene as the p-type organic material. The complementary inverter exhibited a large voltage gain of 10 to 12 and a cutoff frequency of 0.5 kHz. ZnO thin film transistors show n-type semiconducting properties having field-effect mobility of 2.1×10,3 cm2/Vs. On the other hand, pentacene thin film transistors show p-type semiconducting properties having field-effect mobility of 3.2×10,2 cm2/Vs. We describe basic charge transfer characteristics of ZnO thin films. The results obtained here demonstrate that it is important for the transistor using ZnO to be injected charge from electrode to semiconducting material effectively. © 2009 Wiley Periodicals, Inc. Electron Comm Jpn, 92(9): 36,42, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecj.10085 [source]


    High-Performance Phototransistors Based on Organic Microribbons Prepared by a Solution Self-Assembly Process

    ADVANCED FUNCTIONAL MATERIALS, Issue 6 2010
    Yunlong Guo
    Abstract Oligoarenes as an alternative group of promising semiconductors in organic optoelectronics have attracted much attention. However, high-performance and low-cost opto-electrical devices based on linear asymmetric oligoarenes with nano/microstructures are still rarely studied because of difficulties both in synthesis and high-quality nano/microstructure growth. Here, a novel linear asymmetric oligoarene 6-methyl-anthra[2,3- b]benzo[d]thiophene (Me-ABT) is synthesized and its high-quality microribbons are grown by a solution process. The solution of Me-ABT exhibits a moderate fluorescence quantum yield of 0.34, while the microribbons show a glaucous light emission. Phototransistors based on an individual Me-ABT microribbon prepared by a solution-phase self-assembly process showed a high mobility of 1.66,cm2,V,1 s,1, a large photoresponsivity of 12,000 A W,1, and a photocurrent/dark-current ratio of 6000 even under low light power conditions (30,µW cm,2). The measured photoresponsivity of the devices is much higher than that of inorganic single-crystal silicon thin film transistors. These studies should boost the development of the organic semiconductors with high-quality microstructures for potential application in organic optoelectronics. [source]


    The Role of OTS Density on Pentacene and C60 Nucleation, Thin Film Growth, and Transistor Performance

    ADVANCED FUNCTIONAL MATERIALS, Issue 12 2009
    Ajay Virkar
    Abstract In organic thin film transistors (OTFTs), charge transport occurs in the first few monolayers of the semiconductor near the semiconductor/dielectric interface. Previous work has investigated the roles of dielectric surface energy, roughness, and chemical functionality on performance. However, large discrepancies in performance, even with apparently identical surface treatments, indicate that additional surface parameters must be identified and controlled in order to optimize OTFTs. Here, a crystalline, dense octadecylsilane (OTS) surface modification layer is found that promotes two-dimensional semiconductor growth. Higher mobility is consistently achieved for films deposited on crystalline OTS compared to on disordered OTS, with mobilities as high as 5.3 and 2.3,cm2,V,1,s,1 for C60 and pentacene, respectively. This is a significant step toward morphological control of organic semiconductors which is directly linked to their thin film charge carrier transport. [source]


    Induced Crystallization of Rubrene in Thin-Film Transistors

    ADVANCED MATERIALS, Issue 30 2010
    Zhefeng Li
    The poor crystallinity of rubrene in thin films is an obstacle limiting its practical applications in organic electronics. Here we report a strategy of using 6,13-pentacenequinone (PQ), an easily crystallized insulating molecule, as the template layer to induce the crystallization of rubrene in vacuum-deposited thin film transistors. This strategy relies on the bilayer steps of octadecylphosphonic acid, which play a unique role in modulating the morphology of PQ. [source]


    Synthesis and properties of new dialkoxyphenylene quinoxaline-based donor-acceptor conjugated polymers and their applications on thin film transistors and solar cells

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 3 2009
    Mei-Hsiu Lai
    Abstract Synthesis, properties, and optoelectronic device applications of four new bis-[4-(2-ethyl-hexyloxy)-phenyl]quinoxaline(Qx(EHP))-based donor-acceptor conjugated copolymers are reported, in which the donors are thiophene(T), dithiophene(DT), dioctylfluorene(FO), and didecyloxyphenylene(OC10). The optical band gaps (Eg) of PThQx(EHP), PDTQ(EHP), POC10DTQ(EHP), and PFODTQ(EHP) estimated from the onset absorption are 1.57, 1.65, 1.77, and 1.92 eV, respectively. The smallest Eg of PThQx(EHP) among the four copolymers is attributed to the balanced donor/acceptor ratio and backbone coplanarity, leading to a strong intramolecular charge transfer. The hole mobilities obtained from the thin film transistor (TFT) devices of PThQx(EHP), PDTQ(EHP), POC10DTQ(EHP), and PFODTQ(EHP) are 2.52 × 10,4, 4.50 × 10,3, 4.72 × 10,5, and 9.31 × 10,4 cm2 V,1 s,1, respectively, with the on-off ratios of 2.00 × 104, 1.89 × 103, 4.07 × 103, and 2.30 × 104. Polymer solar cell based on the polymer blends of PFODTQ(EHP), PThQx(EHP), POC10DTQ(EHP), and PDTQ(EHP) with [6, 6]-phenyl C61-butyric acid methyl ester (PCBM) under illumination of AM1.5 (100 mW cm,2) solar simulator exhibit power conversion efficiencies of 1.75, 0.92, 0.79, and 0.43%, respectively. The donor/acceptor strength, molecular weight, miscibility, and energy level lead to the difference on the TFT or solar cell characteristics. The present study suggests that the prepared bis[4-(2-ethyl-hexyloxy)-phenyl]quinoxaline donor-acceptor conjugated copolymers would have promising applications on electronic device applications. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 973,985, 2009 [source]


    The effect of oxygen remote plasma treatment on ZnO TFTs fabricated by atomic layer deposition

    PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 8 2010
    Seungjun Lee
    Abstract We deposited ZnO thin films by atomic layer deposition (ALD) and then investigated the chemical and electrical characteristics after plasma treatment. The chemical bonding states were examined by X-ray photoelectron spectroscopy (XPS). The XPS spectra of O 1s showed that the intensity of oxygen deficient regions of the ZnO film decreased from 27.6 to 19.4%, while the intensity of the oxygen bound on the surface of the ZnO film increased from 15.0 to 21.9% as plasma exposure times increased. The ZnO film exhibited a decrease in carrier concentration from 4.9,×,1015 to 1.2,×,1014,cm,3 and an increase in resistivity from 1.2,×,102 to 9.8,×,103,,,cm as the plasma exposure times increased. To verify the changes in the chemical and electrical properties of the ZnO films caused by the oxygen remote plasma treatment, ZnO thin film transistors were fabricated and their electrical properties were investigated. We found that the Ion/Ioff ratio increased from 7.3,×,104 to 8.6,×,106, the subthreshold swings improved from 1.67 to 0.45,V/decade, and the saturation mobility (µsat) decreased from 1.63 to 0.72,cm2/V,s as plasma exposure times were increased. [source]


    Optical, Redox, and NLO Properties of Tricyanovinyl Oligothiophenes: Comparisons between Symmetric and Asymmetric Substitution Patterns

    CHEMISTRY - A EUROPEAN JOURNAL, Issue 21 2006
    Juan Casado Dr.
    Abstract A series of tricyanovinyl (TCV)-substituted oligothiophenes was synthesized and investigated with a number of physical methods including UV/Vis, IR, and Raman spectroscopy, nonlinear optical (NLO) measurements, X-ray diffraction, and cyclic voltammetry. Mono- or disubstituted oligomers were prepared by the reaction of tetracyanoethylene with mono- or dilithiated oligomers. The comparative effects of the symmetric and asymmetric substitutions in the electronic and molecular properties have been addressed. These oligomers display dramatic reductions in both their optical and electrochemical band gaps in comparison with unsubstituted molecules. The analysis of the electronic properties of the molecules was assisted by density functional theory calculations, which are in excellent agreement with the experimental data. TCV substitution influences the energies of the frontier orbitals, especially with respect to the stabilization of LUMO orbitals. X-ray structural characterization of a monosubstituted oligomer exhibits ,-stacking with favorable intermolecular interactions. NLO results agree with the role of the intramolecular charge-transfer feature in the asymmetric samples. These results furthermore exalt the role of conformational flexibility in the disubstituted compounds and reveal an unexpected nonlinear optical activity for symmetric molecules. Regarding the electronic structure, the interpretation of the vibrational data reflects the balanced interplay between aromatic and quinoid forms, finely tuned by the chain length and substitution pattern. The electronic and structural properties are consistent with the semiconducting properties exhibited by these materials in thin film transistors (TFTs). [source]