Films Cast (film + cast)

Distribution by Scientific Domains


Selected Abstracts


Synthesis and characterization of novel poly(arylene ether)s based on 9,10-bis-(4-fluoro-3-trifluoromethylphenyl) anthracene and 2,7-bis-(4-fluoro-3-trifluoromethylphenyl) fluorene

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2007
Arun K. Salunke
Abstract Two new bisfluoro monomers 9,10-bis-(4-fluoro-3-trifluoromethylphenyl) anthracene and 2,7-bis-(4-fluoro-3-trifluoromethylphenyl) fluorene have been synthesized by the cross-coupling reaction of 2-fluoro-3-trifluoromethyl phenyl boronic acid with 9,10-dibromo anthracene and 2,7-dibromo fluorine, respectively. These two bisfluoro compounds were used to prepare several poly(arylene ether)s by aromatic nucleophilic displacement of fluorine with various bisphenols; such as bisphenol-A, bisphenol-6F, bishydroxy biphenyl, and 9,9-bis-(4-hydroxyphenyl)-fluorene. The products obtained by displacement of the fluorine atoms exhibits weight-average molar masses up to 1.5 ×105 g mol,1 and number average molecular weight up to 6.8 × 104 g mol,1 in GPC. These poly(arylene ether)s show very high thermal stability even up to 490°C for 5% weight loss occurring at this temperature in TGA in synthetic air and showed glass transition temperature observed up to 310°C. All the polymers are soluble in a wide range of organic solvents, e.g., CHCl3, THF, NMP, and DMF. Films cast from DMF solution are brittle in nature. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007 [source]


Characterization of Fish-Skin Gelatin Gels and Films Containing the Antimicrobial Enzyme Lysozyme

JOURNAL OF FOOD SCIENCE, Issue 5 2006
C.K. Bower
ABSTRACT:, Fish skins are rich in collagen and can be used to produce food-grade gelatin. Films cast from fish-skin gelatins are stable at room temperature and can act as a barrier when applied to foods. Lysozyme is a food-safe, antimicrobial enzyme that can also produce gels and films. When cold-water, fish-skin gelatin is enhanced with lysozyme, the resulting film has antimicrobial properties. The objective of this study was to characterize the effect on strength and barrier properties of lysozyme-enhanced fish-skin gelatin gels and films, and evaluate their activity against potential spoilage bacteria. Solutions containing 6.67% fish-skin gelatin were formulated to contain varying levels of hen-egg-white lysozyme. Gels were evaluated for strength, clarity, and viscoelastic properties. Films were evaluated for water activity, water vapor permeability, and antimicrobial barrier capabilities. Fish-skin gels containing 0.1% and 0.01% lysozyme had pH (4.8) and gelling-temperatures (2.1 °C) similar to lysozyme-free fish-skin gelatin controls. However, gel strength decreased (up to 20%). Turbidities of gels, with or without lysozyme, were comparable at all concentrations. Films cast with gelatin containing lysozyme demonstrated similar water vapor permeabilities and water activities. Lysozyme was still detectable in most fish gelatin films. More antimicrobial activity was retained in films cast with higher lysozyme concentrations and in films where lysozyme was added after the gelatin had been initially heated. These results suggest that fish-skin gelatin gels and films, when formulated with lysozyme, may provide a unique, functional barrier to increase the shelf life of food products. [source]


Low-Molecular-Weight Poly(, -methyl ,,L -malate) of Microbial Origin: Synthesis and Crystallization

MACROMOLECULAR BIOSCIENCE, Issue 2 2005
Carlos E. Fernández
Abstract Summary: Low-molecular-weight poly(, -methyl ,,L -malate) made of approximately 25,30 units was prepared from microbial poly(,,L -malic acid) by treatment with diazomethane. The thermal characterization of the polymalate methyl ester was carried out and its crystalline structure was preliminary examined. Its ability to crystallize both from solution and from the melt was comparatively evaluated. Poly(, -methyl ,,L -malate) spherulitic film cast from CHCl3. [source]


Highly stable electrochromic polyamides based on N,N -bis(4-aminophenyl)- N,,N,-bis(4- tert -butylphenyl)-1,4-phenylenediamine

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 9 2009
Sheng-Huei Hsiao
Abstract A new triphenylamine-containing aromatic diamine monomer, N,N -bis(4-aminophenyl)- N,,N,-bis(4- tert -butylphenyl)-1,4-phenylenediamine, was synthesized by an established synthetic procedure from readily available reagents. A novel family of electroactive polyamides with di- tert -butyl-substituted N,N,N,,N,-tetraphenyl-1,4-phenylenediamine units were prepared via the phosphorylation polyamidation reactions of the newly synthesized diamine monomer with various aromatic or aliphatic dicarboxylic acids. All the polymers were amorphous with good solubility in many organic solvents, such as N -methyl-2-pyrrolidinone (NMP) and N,N -dimethylacetamide, and could be solution-cast into tough and flexible polymer films. The polyamides derived from aromatic dicarboxylic acids had useful levels of thermal stability, with glass-transition temperatures of 269,296 °C, 10% weight-loss temperatures in excess of 544 °C, and char yields at 800 °C in nitrogen higher than 62%. The dilute solutions of these polyamides in NMP exhibited strong absorption bands centered at 316,342 nm and photoluminescence maxima around 362,465 nm in the violet-blue region. The polyamides derived from aliphatic dicarboxylic acids were optically transparent in the visible region and fluoresced with a higher quantum yield compared with those derived from aromatic dicarboxylic acids. The hole-transporting and electrochromic properties were examined by electrochemical and spectro-electrochemical methods. Cyclic voltammograms of the polyamide films cast onto an indium-tin oxide-coated glass substrate exhibited two reversible oxidation redox couples at 0.57,0.60 V and 0.95,0.98 V versus Ag/AgCl in acetonitrile solution. The polyamide films revealed excellent elcterochemical and electrochromic stability, with a color change from a colorless or pale yellowish neutral form to green and blue oxidized forms at applied potentials ranging from 0.0 to 1.2 V. These anodically coloring polymeric materials showed interesting electrochromic properties, such as high coloration efficiency (CE = 216 cm2/C for the green coloring) and high contrast ratio of optical transmittance change (,T%) up to 64% at 424 nm and 59% at 983 nm for the green coloration, and 90% at 778 nm for the blue coloration. The electroactivity of the polymer remains intact even after cycling 500 times between its neutral and fully oxidized states. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2330,2343, 2009 [source]


Synthesis, photoluminescence, and electrochromic properties of wholly aromatic polyamides bearing naphthylamine chromophores

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 20 2006
Guey-Sheng Liou
Abstract A series of novel polyamides with pendent naphthylamine units having inherent viscosities of 0.15,1.02 dL/g were prepared via direct phosphorylation polycondensation from various diamines and a naphthylamine-based aromatic dicarboxylic acid, 1-[N,N -di(4-carboxyphenyl)amino]naphthalene. These amorphous polyamides were readily soluble in various organic solvents and could be cast into transparent and tough films. The aromatic polyamides had useful levels of thermal stability associated with high glass-transition temperatures (268,355 °C), 10% weight loss temperatures in excess of 480 °C, and char yields at 800 °C in nitrogen higher than 60%. These polymers showed maximum ultraviolet,visible absorption at 350,358 nm and exhibited fluorescence emission maxima around 435,458 nm in N -methyl-2-pyrrolidinone solutions with fluorescence quantum yields ranging from 0.4 to 15.0%. The hole-transporting and electrochromic properties were examined with electrochemical and spectroelectrochemical methods. Cyclic voltammograms of the polyamide films cast onto an indium tin oxide coated glass substrate exhibited one oxidative redox couple around 1.08,1.16 V (oxidation onset potential) versus Ag/AgCl in an acetonitrile solution and revealed good stability of the electrochromic characteristics, with a color change from colorless to green at applied potentials ranging from 0 to 1.6 V. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6094,6102, 2006 [source]