Filamentous Algae (filamentous + alga)

Distribution by Scientific Domains


Selected Abstracts


Factors influencing the abundance of Japanese encephalitis vectors in ricefields in India , II.

MEDICAL AND VETERINARY ENTOMOLOGY, Issue 1 2002
Biotic
Abstract. The relationship of insect predators and phytoplankton with the abundance of Culex tritaeniorhynchus Giles, Cx. vishnui Theobald and Cx. pseudovishnui Colless mosquito larvae and pupae (Diptera: Culicidae) in ricefields was investigated during three rice growing seasons. Notonectids were the most abundant insect predators, whereas diatoms dominated among phytoplankton. Multiple regression analysis showed that the occurrence of notonectids (both nymphs and adults) was negatively associated with larval abundance. Phytoplankton, especially diatoms and blue green algae (BGA), were found to favour abundance of culicine immatures during Navarai and Kuruvai crops, respectively. Larval gut analysis showed that the intake of algae by late instars was high, with 93%, 58% and 24% of diatoms, BGA and green algae, respectively. Filamentous algae may not necessarily be of nutritive value, but they are observed to form mats, which provide protection to the mosquito immatures from the predators. [source]


Apoptotic-like morphology is associated with annual synchronized death in kleptoplastic sea slugs (Elysia chlorotica)

INVERTEBRATE BIOLOGY, Issue 2 2003
William L. Mondy
Abstract. Certain digestive cells of the opisthobranch mollusc, Elysia chlorotica, contain functional chloroplasts which they steal from the filamentous alga, Vaucheria litorea. The adult portion of the life cycle of the slug lasts for ,10 months and is completely synchronized among individuals. All the adults die each year within a few weeks of each other. We have examined the microscopic morphology of the slugs near the end of the life cycle. Light microscopy demonstrated an absence of chloroplasts in most of the digestive epithelial cells, the appearance of many crypt cells containing residual bodies and an invasion of the blood sinuses by neoplastic morula-like cells as the animals die. Electron microscopy revealed a degeneration of the digestive diverticulum which had several morphological characteristics in common with apoptosis: expansion of the endoplasmic reticulum and Golgi apparatus, DNA fragmentation, formation of primary lysosomes, and condensation of chromatin. These are followed by fragmentation of the nucleus and cytoplasm into autosomes merging to form a large central autolysosome. In addition in the aging slugs, the plastids begin to degenerate until none were left in the digestive epithelial cells and the central autolysosome contained numerous viral particles. [source]


Oviposition habitat selection for a predator refuge and food source in a mosquito

ECOLOGICAL ENTOMOLOGY, Issue 3 2005
J. Guillermo Bond
Abstract., 1.,The influence of filamentous algae on oviposition habitat selection by the mosquito Anopheles pseudopunctipennis and the consequences of oviposition decisions on the diet, development, body size, and survival of offspring were examined. 2.,A natural population of An. pseudopunctipennis in Chiapas, Mexico, oviposited almost exclusively in containers with filamentous algae. Algae represented 47% of the gut contents of mosquito larvae sampled from the natural population. Mosquito larvae fed on an exclusive diet of algae developed as quickly and achieved the same adult body size (wing length) as their conspecifics fed on a standard laboratory diet. 3.,Multiple regression of survival of mosquito larvae on percentage surface area cover of algae (0,99%) and the density of predatory fish (zero to four fish per container) was best described by a second-order polynomial model. Increasing fish densities resulted in a reduction in mosquito survival in all algal treatments. The highest incidence of survival was observed at intermediate (66%) algal cover in all treatments. 4.,The presence of fish significantly extended larval development times whereas algal cover had no significant effect. The presence of fish resulted in emergence of smaller adults due to reduced feeding opportunities and predator avoidance behaviour. Algal cover also affected mosquito wing length but differently at each fish density. 5.,Oviposition habitat selection improves survival in the presence of predators and feeding opportunities for An. pseudopunctipennis larvae. [source]


Spatial and ontogenetic variability in the microhabitat use of stream-dwelling spined loach (Cobitis taenia) and stone loach (Barbatula barbatula)

JOURNAL OF APPLIED ICHTHYOLOGY, Issue 6 2004
G. H. Copp
Summary Ontogenetic and spatial variability in microhabitat use of spined loach Cobitis taenia (Linnaeus), considered as one species for the purposes of this study, and stone loach Barbatula barbatula (Linnaeus) were examined in the River Great Ouse basin, England, using multivariate and habitat suitability methods, including a technique for handling spatial variation in collections of preference curves. Distinct ordinations of spined age classes and stone loach developmental stages, respectively, in canonical correspondence analysis of species × variables × samples relationships suggest that the two species occupy completely different microhabitats; however, young-of-the-year spined loach occurred more often than expected with all developmental stages of stone loach except young larvae. Water velocity and filamentous algae were the most influential microhabitat variables, the latter decreasing in importance with increasing age of both fish species. Preferred water velocities generally decreased with age in spined loach and increased in stone loach, with substratum size generally increasing with fish age in both species. Spatial variation in microhabitat preferences was great in both species but less so in the spined loach, suggesting that limited plasticity in habitat use could account, at least in part, for the latter species' limited distribution and abundance in the catchment. Preference curves for a species, if generated and verified for all life intervals and all seasons, could be used as a management tool for a given stream or sector of river basin. But preference curves should be generated for each location to ensure that river management decisions with regard habitat and species conservation consider local-level species requirements. Thus, a multi-(eco)species and multi-scale approach is required in habitat suitability assessments. [source]


Top-down and bottom-up control in an eelgrass,epiphyte system

OIKOS, Issue 5 2008
Sybill Jaschinski
Nutrient supply and the presence of grazers can control primary producers in aquatic ecosystems, but the relative importance of bottom-up and top-down effects remains inconclusive. We conducted a mesocosm experiment and a field study to investigate the independent and interactive effects of nutrient enrichment and grazing on primary producers in an eelgrass bed Zostera marina. Nutrient treatments consisted of ambient or enriched (2× and 4× ambient) concentrations of inorganic nitrogen and phosphate. Grazer treatments consisted of presence or absence of field densities of the common isopod Idotea baltica. We found strong and interacting effects of nutrients and grazing on epiphytes. Epiphyte biomass and productivity were enhanced by nutrient enrichment and decreased in the presence of grazers. The absolute amount of epiphyte biomass consumed by grazers increased under high nutrient supply, and thus, nutrient effects were stronger in the absence of grazing. The effects of grazers and fertilisation on epiphyte composition were antagonistic: chain-forming diatoms and filamentous algae profited from nutrient enrichment, but their proportions were reduced by grazing. Eelgrass growth was positively affected by grazing and by nutrient enrichment at moderate nutrient concentrations. High nutrient supply reduced eelgrass productivity compared to moderate nutrient conditions. The monthly measured field data showed a nitrogen limitation for epiphytes and eelgrass in summer, which may explain the positive effect of nutrient enrichment on both primary producers. Generally, the field data suggested the possibility of seasonally varying importance of bottom-up and top-down control on primary producers in this eelgrass system. [source]


Disturbance and reef topography maintain high local diversity in Ecklonia radiata kelp forests

OIKOS, Issue 10 2007
Benjamin D. Toohey
Disturbance of competitive-dominant plant and algae canopies often lead to increased diversity of the assemblage. Kelp forests, particularly those of temperate Western Australia, are habitats with high alpha diversity. This study investigated the roles of broad-scale canopy loss and local scale reef topography on structuring the kelp-dominated macroalgal forests in Western Australia. Eighteen 314,m2 circular areas were cleared of their Ecklonia radiata canopy and eighteen controls were established across three locations. The patterns of macroalgal recolonisation in replicate clearances were observed over a 34,month period. Macroalgal species richness initially increased after canopy removal with a turf of filamentous and foliose macroalgae dominating cleared areas for up to seven months. A dense Sargassum canopy dominated cleared areas from 11 to 22,months. By 34,months, partial recovery of the kelp canopy into cleared areas had occurred. Some cleared areas did not follow this trajectory but remained dominated by turfing, foliose and filamentous algae. As kelp canopies developed, the initial high species diversity declined but still remained elevated relative to undisturbed controls, even after 34 months. More complex reef topography was associated with greater variability in the algal assemblage between replicate quadrats suggesting colonising algae had a greater choice of microhabitats available to them on topographically complex reefs. Shading by canopies of either Sargassum spp. and E. radiata are proposed to highly influence the abundance of algae through competitive exclusion that is relaxed by disturbance of the canopy. Disturbance of the canopy in E. radiata kelp forests created a mosaic of different patch types (turf, Sargassum -dominated, kelp-dominated). These patch types were both transient and stable over the 34 months of this study, and are a potential contemporary process that maintains high species diversity in temperate kelp-dominated reefs. [source]


Interactions between neighboring algae and snail grazing in structuring microdistribution patterns of periphyton

OIKOS, Issue 3 2001
Masakado Kawata
The micro-distribution of periphyton (filamentous algae) on homogeneous substrates was examined in experimental tanks with and without the pressure of grazing snails. The growth of periphyton attached to artificial substrate was estimated at a small spatial scale (9.3 mm×9.3 mm cells) by varying the number of grazers (0, 5, or 10 snails per tank), using image processing analysis without removing the periphyton. The results suggest that periphyton growth within a cell was negatively affected by the biomass of periphyton in the cell but was positively affected by the biomass of periphyton in neighboring cells. A semivariogram analysis indicated that spatial heterogeneity increased with increasing grazing pressure. The size of patches was not clearly related to the number of snails, but there was a tendency for relative patch size to increase with snail density. Computer simulations were also conducted to examine factors affecting the degree of spatial heterogeneity. The simulation studies indicated that snails should graze a site that was previously grazed in order to produce the observed spatial heterogeneity of periphyton. The results also indicated that the positive effects of neighboring periphyton on the growth of algae might create patches. The interactions among neighboring algae and snail grazing might be an important factor creating the spatial heterogeneity of periphyton even on homogeneous substrates. [source]


Effects of herbivory and the season of disturbance on algal succession in a tropical intertidal shore, Phuket, Thailand

PHYCOLOGICAL RESEARCH, Issue 2 2010
Jaruwan Mayakun
SUMMARY The effects of herbivory and the season of disturbance on species composition and algal succession were experimentally tested at a tropical intertidal shore, Phuket Island, Thailand. Dead coral patches were cleared of all organisms during both the dry and rainy seasons in order to study the effects of season on algal succession and cages were set up to exclude fish herbivory. Algal succession in this intertidal habitat showed a simple pattern and took a year from the early Ulva paradoxa C. Agardh stage to the late Polysiphonia sphaerocarpa Břrgesen stage. The abundance of algae during succession was under the influence of seasonal change. U. paradoxa reproduced and recruited throughout the year. Caging effects did not apparently influence algal abundance, perhaps because resident herbivorous damselfishes excluded other herbivores from their territories and maintained their algal "farms". Unexpectedly, the percent cover of Ulva in the caged plots was lower than in uncaged plots. This pattern may indicate that caging excluded damselfishes only, but allowed small herbivores that consumed substantial amounts of soft filamentous algae in the cages. [source]


Strategies providing success in a variable habitat: II.

PLANT CELL & ENVIRONMENT, Issue 10 2000
Ecophysiology of photosynthesis of Cladophora glomerata
ABSTRACT Cladophora glomerata (L.) Kütz. is the dominant filamentous algae of the river Ilm, Thuringia, Germany. For most of the year it can be found at open as well as at shaded sites. Photosynthetic acclimation of C. glomerata to different light intensities was detected by chlorophyll fluorescence measurements and pigment analysis. Cladophora glomerata from highlight sites showed decreased values of efficiency of open photosystem II (Fv/Fm) as compared with C. glomerata from low-light sites. Winter populations revealed higher Fv/Fm values than summer populations. A light-induced decrease in efficiency of the closed photosystem II was observed at increasing irradiance intensities. The decrease was higher in C. glomerata from shaded sites compared with plants from open sites. Differences in the photosynthetic electron transport rate of different populations of C. glomerata were shown by photosynthesis,irradiance curves. Summer populations from high-light sites yielded higher maximum electron transport rates than plants from low-light sites, whereas winter populations exhibited significantly decreased values compared with the summer populations. Results of the analysis of photosynthetic pigments corresponded with data from chlorophyll fluorescence measurements. In addition to these long-term acclimation effects, C. glomerata expressed its ability to cope with rapid changes in the light environment by the de-epoxidation of violaxanthin during exposure to high light intensities. [source]