Filament Dynamics (filament + dynamics)

Distribution by Scientific Domains


Selected Abstracts


The deaf mouse mutant whirler suggests a role for whirlin in actin filament dynamics and stereocilia development

CYTOSKELETON, Issue 7 2007
Mette M. Mogensen
Abstract Stereocilia, finger-like projections forming the hair bundle on the apical surface of sensory hair cells in the cochlea, are responsible for mechanosensation and ultimately the perception of sound. The actin cytoskeleton of the stereocilia contains hundreds of tightly cross-linked parallel actin filaments in a paracrystalline array and it is vital for their function. Although several genes have been identified and associated with stereocilia development, the molecular mechanisms responsible for stereocilia growth, maintenance and organisation of the hair bundle have not been fully resolved. Here we provide further characterisation of the stereocilia of the whirler mouse mutant. We found that a lack of whirlin protein in whirler mutants results in short stereocilia with larger diameters without a corresponding increase in the number of actin filaments in inner hair cells. However, a decrease in the actin filament packing density was evident in the whirler mutant. The electron-density at the tip of each stereocilium was markedly patchy and irregular in the whirler mutants compared with a uniform band in controls. The outer hair cell stereocilia of the whirler homozygote also showed an increase in diameter and variable heights within bundles. The number of outer hair cell stereocilia was significantly reduced and the centre-to-centre spacing between the stereocilia was greater than in the wildtype. Our findings suggest that whirlin plays an important role in actin filament packing and dynamics during postnatal stereocilium elongation. Cell Motil. Cytoskeleton 2007. © 2007 Wiley-Liss, Inc. [source]


Actin-binding domain of mouse plectin

FEBS JOURNAL, Issue 10 2004
Crystal structure, binding to vimentin
Plectin, a large and widely expressed cytolinker protein, is composed of several subdomains that harbor binding sites for a variety of different interaction partners. A canonical actin-binding domain (ABD) comprising two calponin homology domains (CH1 and CH2) is located in proximity to its amino terminus. However, the ABD of plectin is unique among actin-binding proteins as it is expressed in the form of distinct, plectin isoform-specific versions. We have determined the three-dimensional structure of two distinct crystalline forms of one of its ABD versions (pleABD/2,) from mouse, to a resolution of 1.95 and 2.0 Å. Comparison of pleABD/2, with the ABDs of fimbrin and utrophin revealed structural similarity between plectin and fimbrin, although the proteins share only low sequence identity. In fact, pleABD/2, has been found to have the same compact fold as the human plectin ABD and the fimbrin ABD, differing from the open conformation described for the ABDs of utrophin and dystrophin. Plectin harbors a specific binding site for intermediate filaments of various types within its carboxy-terminal R5 repeat domain. Our experiments revealed an additional vimentin-binding site of plectin, residing within the CH1 subdomain of its ABD. We show that vimentin binds to this site via the amino-terminal part of its rod domain. This additional amino-terminal intermediate filament protein binding site of plectin may have a function in intermediate filament dynamics and assembly, rather than in linking and stabilizing intermediate filament networks. [source]


Actin filaments-stabilizing and -bundling activities of cofilin-phosphatase Slingshot-1

GENES TO CELLS, Issue 5 2007
Souichi Kurita
Slingshot-1 (SSH1) is known to regulate actin filament dynamics by dephosphorylating and activating cofilin, an actin-depolymerizing factor. SSH1 binds to filamentous (F-) actin through its multiple F-actin-binding sites and its cofilin-phosphatase activity is enhanced by binding to F-actin. In this study, we demonstrate that SSH1 has F-actin-stabilizing and -bundling activities. In vitro actin depolymerization assays revealed that SSH1 suppressed spontaneous and cofilin-induced actin depolymerization in a dose-dependent manner. SSH1 inhibited F-actin binding and severing activities of cofilin. Low-speed centrifugation assays combined with fluorescence and electron microscopic analysis revealed that SSH1 has F-actin-bundling activity, independently of its cofilin-phosphatase activity. Deletion of N- or C-terminal regions of SSH1 significantly reduced its F-actin-stabilizing and -bundling activities, indicating that both regions are critical for these functions. As SSH1 does not form a homodimer, it probably bundles F-actin through its multiple F-actin-binding sites. Knockdown of SSH1 expression by RNA interference significantly suppressed stress fiber formation in C2C12 myoblast cells, indicating a role for SSH1 in stress fiber formation or stabilization in cells. SSH1 thus has the potential to regulate actin filament dynamics and organization in cells via F-actin-stabilizing and -bundling activities, in addition to its ability to dephosphorylate cofilin. [source]


Signaling mechanisms that regulate actin-based motility processes in the nervous system

JOURNAL OF NEUROCHEMISTRY, Issue 3 2002
Gary Meyer
Abstract Actin-based motility is critical for nervous system development. Both the migration of neurons and the extension of neurites require organized actin polymerization to push the cell membrane forward. Numerous extracellular stimulants of motility and axon guidance cues regulate actin-based motility through the rho GTPases (rho, rac, and cdc42). The rho GTPases reorganize the actin cytoskeleton, leading to stress fiber, filopodium, or lamellipodium formation. The activity of the rho GTPases is regulated by a variety of proteins that either stimulate GTP uptake (activation) or hydrolysis (inactivation). These proteins potentially link extracellular signals to the activation state of rho GTPases. Effectors downstream of the rho GTPases that directly influence actin polymerization have been identified and are involved in neurite development. The Arp2/3 complex nucleates the formation of new actin branches that extend the membrane forward. Ena/VASP proteins can cause the formation of longer actin filaments, characteristic of growth cone actin morphology, by preventing the capping of barbed ends. Actin-depolymerizing factor (ADF)/cofilin depolymerizes and severs actin branches in older parts of the actin meshwork, freeing monomers to be re-incorporated into actively growing filaments. The signaling mechanisms by which extracellular cues that guide axons to their targets lead to direct effects on actin filament dynamics are becoming better understood. [source]