Home About us Contact | |||
Field Components (field + component)
Kinds of Field Components Selected AbstractsSplit-component PML absorbing conditions for SS-TLMINTERNATIONAL JOURNAL OF NUMERICAL MODELLING: ELECTRONIC NETWORKS, DEVICES AND FIELDS, Issue 3 2004S. Le Maguer Abstract Known as alternate direct implicit (ADI) or split-step (SS) schemes, a new class of time-domain algorithms has recently been proposed. Their salient feature concerns their numerical stability, regardless the time-step used. Thus, significant computational advantages can be obtained when non-uniform mesh is used. To study open structures or determine S-parameters, absorbing boundary conditions (ABC) have to be used. The perfectly matched layers (PML) technique based on split field component is implemented for the SS-TLM algorithm. The complete set of updating equations is provided and the new PML is validated. It is shown to provide high accuracy even better than that of classical PML-TLM scheme. In addition, it is found that using a high time-step does not seem to degrade significantly the accuracy of PML. Thus, the PML technique is very well adapted to SS-TLM as confirmed by various applications. Finally, unlike all classical TLM-PML schemes, the technique is found to be stable. Copyright © 2004 John Wiley & Sons, Ltd. [source] A pattern-reconfigurable microstrip antenna elementMICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 6 2006K. W. Lee Abstract A novel radiation-pattern-reconfigurable circularly polarized microstrip antenna structure is presented. The measured results show that the antenna is able to provide a magnitude difference of more than 6 dB at 90° from broadside (in two principal planes) for the tangential (to the antenna surface) field component between the on and off states of the switches. Nonetheless, the vertical field component remains relatively unchanged. © 2006 Wiley Periodicals, Inc. Microwave Opt Technol Lett 48: 1117,1119, 2006; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.21555 [source] Surprising evolution of the parsec-scale Faraday Rotation gradients in the jet of the BL Lac object B1803+784MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2009M. Mahmud ABSTRACT Several multifrequency polarization studies have shown the presence of systematic Faraday Rotation gradients across the parsec-scale jets of active galactic nuclei, taken to be due to the systematic variation of the line-of-sight component of a helical magnetic (B) field across the jet. Other studies have confirmed the presence and sense of these gradients in several sources, thus providing evidence that these gradients persist over time and over large distances from the core. However, we find surprising new evidence for a reversal in the direction of the Faraday Rotation gradient across the jet of B1803+784, for which multifrequency polarization observations are available at four epochs. At our three epochs and the epoch of Zavala & Taylor, we observe transverse rotation measure (RM) gradients across the jet, consistent with the presence of a helical magnetic field wrapped around the jet. However, we also observe a ,flip' in the direction of the gradient between 2000 June and 2002 August. Although the origins of this phenomenon are not entirely clear, possibly explanations include (i) the sense of rotation of the central supermassive black hole and accretion disc has remained the same, but the dominant magnetic pole facing the Earth has changed from north to south, (ii) a change in the direction of the azimuthal B field component as a result of torsional oscillations of the jet and (iii) a change in the relative contributions to the observed RMs of the ,inner' and ,outer' helical fields in a magnetic-tower model. Although we cannot entirely rule out the possibility that the observed changes in the RM distribution are associated instead with changes in the thermal-electron distribution in the vicinity of the jet, we argue that this explanation is unlikely. [source] Negative permeability around 630 nm in nanofabricated vertical meander metamaterialsPHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 11 2007Heinz Schweizer Abstract We demonstrate a new design of a 3-dimensional meander structure that exhibits negative permeability with a broad bandwidth between 550 nm and 665 nm. The structural design allows for full coupling of the magnetic field component at all angles of incidence. We compare our structure with other metamaterial structures with respect to the series capacitance contributions of the different metamaterials. The investigation of optical metamaterials is carried out combining transmission line analysis with numerical simulations of Maxwell's equations. The analysis is demonstrated for typical split ring structures and the novel 3D meander metamaterial structures. Comparing the resulting scattering parameter spectra as well as the retrieved effective material parameters, we find that transmission line description remains valid for metamaterials at optical frequencies. We find in addition that the longitudinal capacitance is the decisive parameter to achieve negative permeability with a broad bandwidth at optical frequencies. For experimental verification we manufactured split-ring resonator structures and meander metamaterial structures with linewidths down to 30 nm, element sizes down to 100 nm, and periods between 200 nm and 350 nm. For meander metamaterial structures a permeability value of ,1 was achieved within a bandwidth of 50 nm centered at 630 nm. The largest absolute value of ,4.5 was achieved at 650 nm. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] A detailed analysis of hotspots and insulation breakdown phenomena in power inductor windings at high frequency regimes: overcurrents and overvoltagesEUROPEAN TRANSACTIONS ON ELECTRICAL POWER, Issue 6 2008J. A. Brandão Faria Abstract This research paper is the last of a group of three papers dedicated to the analysis and computation of the high-frequency electromagnetic behaviour of inductor windings where a multiconductor transmission line approach is used. The present work is essentially concerned with application aspects linked up with the important engineering problem of windings insulation damage, which can occur either because of excessive temperature (winding hotspots) or because of excessive electric field strength (dielectric breakdown). For single and multilayer windings we present here a wealth of information in graphical and tabular form concerning the distribution of voltages, currents, electric charges, charge densities, electric field components and power losses along the inductor winding turns, operating at the critical resonance frequencies characteristic of the structure (which is the worst possible scenario). This information is analysed and processed in order to allow for a detection of the winding zones where breakdown phenomena and hotspots could most probably occur. Copyright © 2007 John Wiley & Sons, Ltd. [source] Off-shell supergravity in five dimensions and supersymmetric brane world scenariosFORTSCHRITTE DER PHYSIK/PROGRESS OF PHYSICS, Issue 9 2003M. ZuckerArticle first published online: 18 AUG 200 We review the construction of off-shell Poincaré supergravity in five dimensions. We describe in detail the minimal multiplet, which is the basic building block, containing the propagating fields of supergravity. All matter multiplets containing (8 + 8) components, being the smallest matter multiplets in five dimensions, are constructed. Using these multiplets the complete tensor calculus for supergravity is developed. As expected it turns out, that there exist three distinct minimal (i.e. containing (48 + 48) field components) off-shell supergravities. The lagrangians for these theories and their gauged variants are given explicitly. These results are used in the second part to develop a tensor calculus on the orbifold . Gauged supergravity on the orbifold with additional cosmological constants at the fixpoints, is constructed. This generalizes the work of Randall-Sundrum to local supersymmetry. The developed tensor calculus is used to extend this model to include matter located at the fixpoints. Chiral and super Yang-Mills multiplets at the fixpoints are considered. [source] An ellipticity criterion in magnetotelluric tensor analysisGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2004M. Becken SUMMARY We examine the magnetotelluric (MT) impedance tensor from the viewpoint of polarization states of the electric and magnetic field. In the presence of a regional 2-D conductivity anomaly, a linearly polarized homogeneous external magnetic field will generally produce secondary electromagnetic fields, which are elliptically polarized. If and only if the primary magnetic field vector oscillates parallel or perpendicular to the 2-D structure, will the horizontal components of the secondary fields at any point of the surface also be linearly polarized. When small-scale inhomogeneities galvanically distort the electric field at the surface, only field rotations and amplifications are observed, while the ellipticity remains unchanged. Thus, the regional strike direction can be identified from vanishing ellipticities of electric and magnetic fields even in presence of distortion. In practice, the MT impedance tensor is analysed rather than the fields themselves. It turns out, that a pair of linearly polarized magnetic and electric fields produces linearly polarized columns of the impedance tensor. As the linearly polarized electric field components generally do not constitute an orthogonal basis, the telluric vectors, i.e. the columns of the impedance tensor, will be non-orthogonal. Their linear polarization, however, is manifested in a common phase for the elements of each column of the tensor and is a well-known indication of galvanic distortion. In order to solve the distortion problem, the telluric vectors are fully parametrized in terms of ellipses and subsequently rotated to the coordinate system in which their ellipticities are minimized. If the minimal ellipticities are close to zero, the existence of a (locally distorted) regional 2-D conductivity anomaly may be assumed. Otherwise, the tensor suggests the presence of a strong 3-D conductivity distribution. In the latter case, a coordinate system is often found, in which three elements have a strong amplitude, while the amplitude of the forth, which is one of the main-diagonal elements, is small. In terms of our ellipse parametrization, this means, that one of the ellipticities of the two telluric vectors approximately vanishes, while the other one may not be neglected as a result of the 3-D response. The reason for this particular characteristic is found in an approximate relation between the polarization state of the telluric vector with vanishing ellipticity and the corresponding horizontal electric field vector in the presence of a shallow conductive structure, across which the perpendicular and tangential components of the electric field obey different boundary conditions. [source] Artificial neural network inversion of magnetotelluric data in terms of three-dimensional earth macroparametersGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2000Vjacheslav Spichak The possibility of solving the three-dimensional (3-D) inverse problem of geoelectrics using the artificial neural network (ANN) approach is investigated. The properties of a supervised ANN based on the back-propagation scheme with three layers of neurons are studied, and the ANN architecture is adjusted. A model class consisting of a dipping dyke in the basement of a two-layer earth with the dyke in contact with the overburden is used for numerical experiments. Six macroparameters of the 3-D model, namely the thickness of the top layer, which coincides with the depth of the dyke (D), the conductivity ratio between the first and second layers (C1,/C2,), the conductivity contrast of the dyke (C/C2,), and the width (W ), length (L ) and dip angle of the dyke (A), are used. Various groups of magnetotelluric field components and their transformations are studied in order to estimate the effect of the data type used on the ANN recognition ability. It is found that use of only the xy - and yx -components of impedance phases results in reasonable recognition errors for all unknown parameters (D: 0.02 per cent, C1/C2: 8.4 per cent, C/C2: 26.8 per cent, W : 0.02 per cent, L : 0.02 per cent, A: 0.24 per cent). The influence of the size and shape of the training data pool (including the ,gaps in education' and ,no target' effects) on the recognition properties is studied. Results from numerous ANN tests demonstrate that the ANN possesses good enough interpolation and extrapolation abilities if the training data pool contains a sufficient number of representative data sets. The effect of noise is estimated by means of mixing the synthetic data with 30, 50 and 100 per cent Gaussian noise. The unusual behaviour of the recognition errors for some of the model parameters when the data become more noisy (in particular, the fact that an increase in error is followed by a decrease) indicates that the use of standard techniques of noise reduction may give an opposite result, so the development of a special noise treatment methodology is required. Thus, it is shown that ANN-based recognition can be successfully used for inversion if the data correspond to the model class familiar to the ANN. No initial guess regarding the parameters of the 3-D target or 1-D layering is required. The ability of the ANN to teach itself using real geophysical (not only electromagnetic) data measured at a given location over a sufficiently long period means that there is the potential to use this approach for interpreting monitoring data. [source] The feasibility of electromagnetic gradiometer measurementsGEOPHYSICAL PROSPECTING, Issue 3 2001Daniel Sattel The quantities measured in transient electromagnetic (TEM) surveys are usually either magnetic field components or their time derivatives. Alternatively it might be advantageous to measure the spatial derivatives of these quantities. Such gradiometer measurements are expected to have lower noise levels due to the negative interference of ambient noise recorded by the two receiver coils. Error propagation models are used to compare quantitatively the noise sensitivities of conventional and gradiometer TEM data. To achieve this, eigenvalue decomposition is applied on synthetic data to derive the parameter uncertainties of layered-earth models. The results indicate that near-surface gradient measurements give a superior definition of the shallow conductivity structure, provided noise levels are 20,40 times smaller than those recorded by conventional EM instruments. For a fixed-wing towed-bird gradiometer system to be feasible, a noise reduction factor of at least 50,100 is required. One field test showed that noise reduction factors in excess of 60 are achievable with gradiometer measurements. However, other collected data indicate that the effectiveness of noise reduction can be hampered by the spatial variability of noise such as that encountered in built-up areas. Synthetic data calculated for a vertical plate model confirm the limited depth of detection of vertical gradient data but also indicate some spatial derivatives which offer better lateral resolution than conventional EM data. This high sensitivity to the near-surface conductivity structure suggests the application of EM gradiometers in areas such as environmental and archaeological mapping. [source] Full-wave analysis of single cylindrical striplines and microstriplines with multilayer dielectricsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 8 2006Farid Bouttout Abstract In this paper, the spectral-domain method is used to calculate the propagation characteristics of cylindrical microstrip transmission lines. The problem is formulated using an electric field integral equation and the spectral-domain Green's function. The solutions of the field components are obtained in matrix forms, which facilitate the calculations of the Green's function and the power flowing over the lines. The Green's functions are obtained in terms of transition matrices over the dielectric layers. The obtained integral equation is solved by moment method using four kinds of basis functions. The convergence of the method is proven. Based on the power,current definition, a stationary expression for the characteristic impedance has been derived analytically. Numerical results of the effective dielectric constant and the characteristic impedance for various line parameters are calculated and analysed. The computed data are found to be in good agreement with results obtained using other methods. The formulation is then applied to covered microstripline, microstripline and stripline with air gaps, for which data are not found in the literature to date. The presented method is used to guide design of microstrip coil for magnetic resonance imaging. This method is also suitable for investigation of multiconductor strip lines. Copyright © 2006 John Wiley & Sons, Ltd. [source] Implicit symmetrized streamfunction formulations of magnetohydrodynamicsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 11 2008K. S. Kang Abstract We apply the finite element method to the classic tilt instability problem of two-dimensional, incompressible magnetohydrodynamics, using a streamfunction approach to enforce the divergence-free conditions on the magnetic and velocity fields. We compare two formulations of the governing equations, the standard one based on streamfunctions and a hybrid formulation with velocities and magnetic field components. We use a finite element discretization on unstructured meshes and an implicit time discretization scheme. We use the PETSc library with index sets for parallelization. To solve the nonlinear problems on each time step, we compare two nonlinear Gauss-Seidel-type methods and Newton's method with several time-step sizes. We use GMRES in PETSc with multigrid preconditioning to solve the linear subproblems within the nonlinear solvers. We also study the scalability of this simulation on a cluster. Copyright © 2008 John Wiley & Sons, Ltd. [source] Modelling of lossy curved surfaces in the 3-D frequency-domain finite-difference methodsINTERNATIONAL JOURNAL OF NUMERICAL MODELLING: ELECTRONIC NETWORKS, DEVICES AND FIELDS, Issue 5 2006Riku M. Mäkinen Abstract A conformal first-order or Leontovic surface-impedance boundary condition (SIBC) for the modelling of fully three-dimensional (3-D) lossy curved surfaces in a Cartesian grid is presented for the frequency-domain finite-difference (FD) methods. The impedance boundary condition is applied to auxiliary tangential electric and magnetic field components defined at the curved surface. The auxiliary components are subsequently eliminated from the formulation resulting in a modification of the local permeability value at boundary cells, allowing the curved 3-D surface to be described in terms of Cartesian grid components. The proposed formulation can be applied to model skin-effect loss in time-harmonic driven problems. In addition, the impedance matrix can be used as a post-processor for the eigenmode solver to calculate the wall loss. The validity of the proposed model is evaluated by investigating the quality factors of cylindrical and spherical cavity resonators. The results are compared with analytic solutions and numerical reference data calculated with the commercial software package CST Microwave StudioÔ (MWS). The convergence rate of the results is shown to be of second-order for smooth curved metal surfaces. The overall accuracy of the approach is comparable to that of CST MWSÔ. Copyright © 2006 John Wiley & Sons, Ltd. [source] Sleeve monopole on a circular ground-planeINTERNATIONAL JOURNAL OF NUMERICAL MODELLING: ELECTRONIC NETWORKS, DEVICES AND FIELDS, Issue 5 2003Zhongxiang Shen Abstract This paper presents a modal-expansion analysis of a sleeve monopole antenna on a finite ground-plane. Two perfectly conducting plates (one above the monopole and the other under the ground-plane) are introduced to confine the modeling region and to facilitate the modal-expansion analysis. The resulting guided-wave structure is then divided into a number of regions and the electromagnetic field components in each region are expanded into the summation of its modal functions. The surface current distribution on the monopole and the antenna's input impedance and radiation pattern are obtained by finding the expansion coefficients through matching the tangential field components across the regional interfaces. Calculated results by the modal-expansion method agree well with measured results for the return loss of a sleeve monopole fed through a circular ground-plane by a coaxial probe. Numerical results for the surface current distribution, input impedance, and radiation pattern of a sleeve monopole on a circular ground plane are presented and discussed. Copyright © 2003 John Wiley & Sons, Ltd. [source] Dynamo-generated magnetic fields at the surface of a massive starMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2005D. J. Mullan ABSTRACT Spruit has shown that an astrophysical dynamo can operate in the non-convective material of a differentially rotating star as a result of a particular instability in the magnetic field (the Tayler instability). By assuming that the dynamo operates in a state of marginal instability, Spruit has obtained formulae which predict the equilibrium strengths of azimuthal and radial field components in terms of local physical quantities. Here, we apply Spruit's formulae to our previously published models of rotating massive stars in order to estimate Tayler dynamo field strengths. There are no free parameters in Spruit's formulae. In our models of 10- and 50-M, stars on the zero-age main sequence, we find internal azimuthal fields of up to 1 MG, and internal radial components of a few kG. Evolved models contain weaker fields. In order to obtain estimates of the field strength at the stellar surface, we examine the conditions under which the Tayler dynamo fields are subject to magnetic buoyancy. We find that conditions for Tayler instability overlap with those for buoyancy at intermediate to high magnetic latitudes. This suggests that fields emerge at the surface of a massive star between magnetic latitudes of about 45° and the poles. We attempt to estimate the strength of the field which emerges at the surface of a massive star. Although these estimates are very rough, we find that the surface field strengths overlap with values which have been reported recently for line-of-sight fields in several O and B stars. [source] Tayler instability with Hall effect in young neutron starsASTRONOMISCHE NACHRICHTEN, Issue 1 2009G. Rüdiger Abstract Collapse calculations indicate that the hot young neutron stars rotate differentially so that strong toroidal magnetic field components should exist in the outer shell where also the Hall effect appears to be important when the Hall parameter = ,B, exceeds unity. The amplitudes of the induced toroidal magnetic fields are limited by the current-induced Tayler instability. An important characteristics of the Hall effect is its distinct dependence on the sign of the magnetic field. We find for fast rotation that positive (negative) Hall parameters essentially reduce (increase) the stability domain. It is thus concluded that the toroidal field belts in young neutron stars induced by their differential rotation should have different amplitudes in both hemispheres which later are frozen in. Due to the effect of magnetic suppression of the heat conductivity also the brightness of the two hemispheres should be different. As a possible example for our scenario the isolated neutron star RBS 1223 is considered which has been found to exhibit different X-ray brightness at both hemispheres (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] |