Field Amplitude (field + amplitude)

Distribution by Scientific Domains


Selected Abstracts


Proposing magnetic nanoparticle hyperthermia in low-field MRI

CONCEPTS IN MAGNETIC RESONANCE, Issue 1 2010
Pádraig Cantillon-Murphy
Abstract This work examines feasibility, practical advantages, and disadvantages of a combined MRI/magnetic particle hyperthermia (MPH) system for cancerous tumor treatment in low perfusion tissue. Although combined MRI/hyperthermia systems have been proposed and constructed, the current proposal differs because the hyperthermia system would be specifically designed to interact with the magnetic nanoparticles injected at the tumor site. The proposal exploits the physical similarities between the magnetic nanoparticles currently employed for MPH and those used as superparamagnetic iron oxide (SPIO) contrast agents in MR imaging. The proposal involves the addition of a rotating magnetic field RF hyperthermia source perpendicular to the MRI B0 field which operates in a similar manner to the MRI RF excitation field, B1, but at significantly higher frequency and field strength such that the magnetic nanoparticles are forced to rotate in its presence. This rotation is the source of increases in temperature which are of therapeutic benefit in cancer therapy. For rotating magnetic fields with amplitudes much smaller than B0, the nanoparticles' suspension magnetization rapidly saturates with increasing B0. Therefore, the proposal is best suited to low-field MRI systems when magnetic saturation is incomplete. In addition, careful design of the RF hyperthermia source is required to ensure no physical or RF interference with the B1 field used for MRI excitation. Notwithstanding these caveats, the authors have shown that localized steady-state temperature rises in small spherical tumors of up to 10°C are conceivable with careful selection of the nanoparticle radius and concentration, RF hyperthermia field amplitude and frequency. © 2010 Wiley Periodicals, Inc. Concepts Magn Reson Part A 36A: 36,47, 2010. [source]


Recovery and refractoriness of auditory evoked fields after gaps in click trains

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2004
Alexander Gutschalk
Abstract When clicks are presented in a train at a rate above ,5 Hz, they evoke a sustained field in human auditory cortex that can be recorded by magnetoencephalography. In this study we evaluated how this sustained field continues when a click train is interrupted by a silent gap. The stimuli were click trains with interclick intervals of either 12 or 24 ms, which produce pitches of 83.3 or 41.7 Hz, respectively. The click trains were 996 ms in duration with a gap of 12, 24, 48, 96, or 192 ms beginning 504 ms post-stimulus onset. The sustained field for click trains with short gaps was similar to the one evoked by a continuous click train. Subtraction of the response evoked by a solitary click train of 504 ms enabled estimation of the sustained field in the interval after the gap. The comparison revealed that the sustained field amplitude after the gap was larger than that at the onset of the initial click train in the interval from 150 to 350 ms after onset, and the difference decreased with gap duration. In contrast, the transient P1m was refractory for gaps up to 48 ms, but had nearly recovered its initial amplitude for gaps of 192 ms. We discuss how these results might relate to the perception, i.e. if an interrupted click train is perceived as one continuous sound with a transient gap or as two successive events. [source]


Enhancement of steady-state auditory evoked magnetic fields in tinnitus

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2004
Eugen Diesch
Abstract The steady-state auditory evoked magnetic field and the Pbm, the magnetic counterpart of the second frontocentrally positive middle latency component of the transitory auditory evoked potential, were measured in ten tinnitus patients using a 122-channel gradiometer system. The patients had varying degrees of hearing loss. In all patients, the tinnitus frequency was located above the frequency of the audiometric edge, i.e. the location on the frequency axis above which hearing loss increases more rapidly. Stimuli were amplitude-modulated sinusoids with carrier frequencies at the tinnitus frequency, the audiometric edge, two frequencies below the audiometric edge, and two frequencies between the audiometric edge and the tinnitus frequency. Below the audiometric edge, the root-mean-square field amplitude of the steady-state response computed across the whole head as well as the contralateral and the ipsilateral dipole moment decreased as a function of carrier frequency. With carrier frequency above the audiometric edge, the steady-state response increased again. The amplitudes of the transitory Pbm component were patterned in a qualitatively similar way, but without the differences being significant. For the steady-state response, both whole-head root-mean-square field amplitude and the dipole moment of the sources at the tinnitus frequency showed significant positive correlations with subjective ratings of tinnitus intensity and intrusiveness. These correlations remained significant when the influence of hearing loss was partialled out. The observed steady-state response amplitude pattern likely reflects an enhanced state of excitability of the frequency region in primary auditory cortex above the audiometric edge. The relationship of tinnitus to auditory cortex hyperexcitability and its independence of hearing loss is discussed with reference to loss of surround inhibition in and map reorganization of primary auditory cortex. [source]


The effect of stimulus intensity on brain responses evoked by transcranial magnetic stimulation

HUMAN BRAIN MAPPING, Issue 3 2004
Soile Komssi
Abstract To better understand the neuronal effects of transcranial magnetic stimulation (TMS), we studied how the TMS-evoked brain responses depend on stimulation intensity. We measured electroencephalographic (EEG) responses to motor-cortex TMS, estimated the intensity dependence of the overall brain response, and compared it to a theoretical model for the intensity dependence of the TMS-evoked neuronal activity. Left and right motor cortices of seven volunteers were stimulated at intensities of 60, 80, 100, and 120% of the motor threshold (MT). A figure-of-eight coil (diameter of each loop 4 cm) was used for focal stimulation. EEG was recorded with 60 scalp electrodes. The intensity of 60% of MT was sufficient to produce a distinct global mean field amplitude (GMFA) waveform in all subjects. The GMFA, reflecting the overall brain response, was composed of four peaks, appearing at 15 ± 5 msec (Peak I), 44 ± 10 msec (II), 102 ± 18 msec (III), and 185 ± 13 msec (IV). The peak amplitudes depended nonlinearly on intensity. This nonlinearity was most pronounced for Peaks I and II, whose amplitudes appeared to sample the initial part of the sigmoid-shaped curve modeling the strength of TMS-evoked neuronal activity. Although the response amplitude increased with stimulus intensity, scalp distributions of the potential were relatively similar for the four intensities. The results imply that TMS is able to evoke measurable brain activity at low stimulus intensities, probably significantly below 60% of MT. The shape of the response-stimulus intensity curve may be an indicator of the activation state of the brain. Hum. Brain Mapp. 21:154,164, 2004. © 2004 Wiley-Liss, Inc. [source]


Effect of Oxygen Partial Pressure During Firing on the High AC Field Response of BaTiO3 Dielectrics

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 4 2010
Ichiro Fujii
The effect of oxygen partial pressure during firing on the high field dielectric response of formulated and undoped BaTiO3 ceramics was investigated. For formulated ceramics, the dielectric constant of both oxygen- and air-fired samples increased almost linearly with the amplitude of the ac-driving field. Formulated BaTiO3 samples sintered in a reducing atmosphere produced a sublinear increase in the permittivity with the ac field amplitude. For undoped BaTiO3 ceramics, the dielectric constant increased sublinearly over a wide range of oxygen partial pressures during firing. It is proposed for the formulated ceramics that the dopant-oxygen vacancy defect dipoles in the shell region accounted for the curvature in the field dependence of the permittivity. These defects appear to add a concentration of weak pinning centers to the potential energy profile through which domain walls move. [source]


Fatigue of Lead Zirconate Titanate Ceramics II: Sesquipolar Loading

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 4 2007
Nina Balke
Piezoelectric actuators generally are driven with unipolar electric load cycles. Although the obtainable strain is increased by small excursions into the negative field regime, this type of load cycle is rarely considered, as its long-time reliability has been questioned. Here, we investigate the degradation of lead zirconate titanate during cycling between high positive and low negative electric fields. Measurements of the large and small signal parameters are used to quantify changes of the material. The fatigue behavior shifts from one best described with existing models of unipolar fatigue to bipolar-like fatigue with increasing field amplitude. [source]


Trabecular bone volume fraction mapping by low-resolution MRI

MAGNETIC RESONANCE IN MEDICINE, Issue 1 2001
M.A. Fernández-Seara
Abstract Trabecular bone volume fraction (TBVF) is highly associated with the mechanical competence of trabecular bone. TBVF is ordinarily measured by histomorphometry from bone biopsies or, noninvasively, by means of high-resolution microcomputed tomography and, more recently, by micro-MRI. The latter methods require spatial resolution sufficient to resolve trabeculae, along with segmentation techniques that allow unambiguous assignment of the signal to bone or bone marrow. In this article it is shown that TBVF can be measured under low-resolution conditions by exploiting the attenuation of the MR signal resulting from fractional occupancy of the imaging voxel by bone and bone marrow, provided that a reference signal is available from a marrow volume devoid of trabeculation. The method requires accurate measurement of apparent proton density, which entails correction for various sources of error. Key among these are the spatial nonuniformity in the RF field amplitude and effects of the slice profile, which are determined by B1 field mapping and numerical integration of the Bloch equations, respectively. By contrast, errors from variations in bone marrow composition (hematopoietic vs. fatty) between trabecular and reference site are predicted to be small and usually negligible. The method was evaluated in phantoms and in vivo in the distal radius and found to be accurate to 1% in marrow volume fraction. Finally, in a group of 12 patients of varying skeletal status, TBVF in the calcaneus was found to strongly correlate with integral bone mineral density of the lumbar vertebrae (r2 = 0.83, p < 0.0001). The method may fail in large imaging objects such as the human trunk at high magnetic field where standing wave and RF penetration effects cause intensity variations that cannot be corrected. Magn Reson Med 46:103,113, 2001. © 2001 Wiley-Liss, Inc. [source]


Self-induced transparency in InGaAs quantum dot waveguides

PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 5 2003
S. Schneider
Abstract We present the experimental observation and the theoretical modelling of self-induced transparency signatures such as nonlinear transmission, pulse retardation and reshaping for subpicosecond pulse propagation in a 2 mm-long InGaAs quantum-dot ridge waveguide at 10 K. The measurements were obtained using a cross-correlation frequency resolved optical gating technique which allows us to retrieve the field amplitude of the propagating pulses. [source]