Home About us Contact | |||
Fitness Trade-offs (fitness + trade-off)
Selected AbstractsCHARACTER DISPLACEMENT AS THE "BEST OF A BAD SITUATION": FITNESS TRADE-OFFS RESULTING FROM SELECTION TO MINIMIZE RESOURCE AND MATE COMPETITIONEVOLUTION, Issue 10 2005Karin S. Pfennig Abstract Character displacement has long been considered a major cause of adaptive diversification. When species compete for resources or mates, character displacement minimizes competition by promoting divergence in phenotypes associated with resource use (ecological character displacement) or mate attraction (reproductive character displacement). In this study, we investigated whether character displacement can also have pleiotropic effects that lead to fitness trade-offs between the benefits of avoiding competition and costs accrued in other fitness components. We show that both reproductive and ecological character displacement have caused spadefoot toads to evolve smaller body size in the presence of a heterospecific competitor. Although this shift in size likely arose as a by-product of character displacement acting to promote divergence between species in mating behavior and larval development, it concomitantly reduces offspring survival, female fecundity, and sexual selection on males. Thus, character displacement may represent the "best of a bad situation" in that it lessens competition, but at a cost. Individuals in sympatry with the displaced phenotype will have higher fitness than those without the displaced trait because they experience reduced competition, but they may have reduced fitness relative to individuals in allopatry. Such a fitness trade-off can limit the conditions under which character displacement evolves and may even increase the risk of "Darwinian extinction" in sympatric populations. Consequently, character displacement may not always promote diversification in the manner that is often expected. [source] DOES EVOLUTION OF ITEROPAROUS AND SEMELPAROUS REPRODUCTION CALL FOR SPATIALLY STRUCTURED SYSTEMS?EVOLUTION, Issue 1 2000Esa Ranta Abstract., A persistent question in the evolution of life histories is the fitness trade-off between reproducing only once (semelparity) in a lifetime or reproducing repeated times in different seasons (iteroparity). The problem can be formulated into a research agenda by assuming that one reproductive strategy is resident (has already evolved) and by asking whether invasion (evolution) of an alternative reproductive strategy is possible. For a spatially nonstructured system, Bulmer (1994) derived the relationship v + PA < 1 (PA is adult survival; vbs and bs are offspring numbers for iteroparous and semelparous breeding strategies, respectively) at which semelparous population cannot be invaded by an iteroparous mutant. When the inequality is changed to v + PA > 1, invasion of a semelparous mutant is not possible. From the inequalities, it is easy to see that possibilities for evolutionary establishment of a novel reproductive strategy are rather narrow. We extended the evolutionary scenario into a spatially structured system with dispersal linkage among the subunits. In this domain, a rare reproductive strategy can easily invade a population dominated by a resident reproductive strategy. The parameter space enabling invasion is far more generous with spatially structured evolutionary scenarios than in a spatially nonstructured system. [source] PHYTOPHAGOUS INSECT,MICROBE MUTUALISMS AND ADAPTIVE EVOLUTIONARY DIVERSIFICATIONEVOLUTION, Issue 5 2008Eric M. Janson Adaptive diversification is a process intrinsically tied to species interactions. Yet, the influence of most types of interspecific interactions on adaptive evolutionary diversification remains poorly understood. In particular, the role of mutualistic interactions in shaping adaptive radiations has been largely unexplored, despite the ubiquity of mutualisms and increasing evidence of their ecological and evolutionary importance. Our aim here is to encourage empirical inquiry into the relationship between mutualism and evolutionary diversification, using herbivorous insects and their microbial mutualists as exemplars. Phytophagous insects have long been used to test theories of evolutionary diversification; moreover, the diversification of a number of phytophagous insect lineages has been linked to mutualisms with microbes. In this perspective, we examine microbial mutualist mediation of ecological opportunity and ecologically based divergent natural selection for their insect hosts. We also explore the conditions and mechanisms by which microbial mutualists may either facilitate or impede adaptive evolutionary diversification. These include effects on the availability of novel host plants or adaptive zones, modifying host-associated fitness trade-offs during host shifts, creating or reducing enemy-free space, and, overall, shaping the evolution of ecological (host plant) specialization. Although the conceptual framework presented here is built on phytophagous insect,microbe mutualisms, many of the processes and predictions are broadly applicable to other mutualisms in which host ecology is altered by mutualistic interactions. [source] CHARACTER DISPLACEMENT AS THE "BEST OF A BAD SITUATION": FITNESS TRADE-OFFS RESULTING FROM SELECTION TO MINIMIZE RESOURCE AND MATE COMPETITIONEVOLUTION, Issue 10 2005Karin S. Pfennig Abstract Character displacement has long been considered a major cause of adaptive diversification. When species compete for resources or mates, character displacement minimizes competition by promoting divergence in phenotypes associated with resource use (ecological character displacement) or mate attraction (reproductive character displacement). In this study, we investigated whether character displacement can also have pleiotropic effects that lead to fitness trade-offs between the benefits of avoiding competition and costs accrued in other fitness components. We show that both reproductive and ecological character displacement have caused spadefoot toads to evolve smaller body size in the presence of a heterospecific competitor. Although this shift in size likely arose as a by-product of character displacement acting to promote divergence between species in mating behavior and larval development, it concomitantly reduces offspring survival, female fecundity, and sexual selection on males. Thus, character displacement may represent the "best of a bad situation" in that it lessens competition, but at a cost. Individuals in sympatry with the displaced phenotype will have higher fitness than those without the displaced trait because they experience reduced competition, but they may have reduced fitness relative to individuals in allopatry. Such a fitness trade-off can limit the conditions under which character displacement evolves and may even increase the risk of "Darwinian extinction" in sympatric populations. Consequently, character displacement may not always promote diversification in the manner that is often expected. [source] THE CONTRIBUTION OF SPONTANEOUS MUTATION TO VARIATION IN ENVIRONMENTAL RESPONSES OF ARABIDOPSIS THALIANA: RESPONSES TO LIGHTEVOLUTION, Issue 2 2005Christina M. Kavanaugh Abstract It has been hypothesized that new, spontaneous mutations tend to reduce fitness more severely in more stressful environments. To address this hypothesis, we grew plants representing 20 Arabidopsis thaliana mutationaccumulation (M-A) lines, advanced to generation 17, and their progenitor, in differing light conditions. The experiment was conducted in a greenhouse, and two treatments were used: full sun and shade, in which influx of red light was reduced relative to far-red. The shade treatment was considered the more stressful because mean absolute fitness was lower in that treatment, though not significantly so. Plants from generation 17 of M-A developed significantly faster than those from generation 0 in both treatments. A significant interaction between generation and treatment revealed that, counter to the hypothesis, M-A lines tended to have higher fitness on average relative to the progenitor in the shaded conditions, whereas, in full sun, the two generations were similar in fitness. A secondary objective of this experiment was to characterize the contribution of new mutations to genotype x environment interaction. We did not, however, detect a significant interaction between M-A line and treatment. Plots of the line-specific enviromental responses indicate no tendency of new mutations to contribute to fitness trade-offs between environments. They also do not support a model of conditionally deleterious mutation, in which a mutatn reduces fitness only in a particular environment. These results suggest that interactions between genotype and light environment previously documented for A. thaliana are not explicable primarily as a consequence of steady input of spontaneous mutations having environment-specific effects. [source] Phenotypic plasticity in insects: the effects of substrate color on the coloration of two ground-hopper speciesEVOLUTION AND DEVELOPMENT, Issue 3 2008Axel Hochkirch SUMMARY The question of how phenotypic variation is maintained within populations has long been a central issue in evolutionary biology. Most of these studies focused on the maintenance of genetic variability, but the phenotype of organisms may also be influenced by environmental cues experienced during ontogeny. Color polymorphism has received particular attention in evolutionary studies as it has strong fitness consequences. However, if body coloration is influenced by the environment, any conclusions on evolutionary consequences of fitness trade-offs can be misleading. Here we present data from a laboratory experiment on the influence of substrate color on three aspects of the coloration of two ground-hopper species, Tetrix subulata and Tetrix ceperoi. We reared hatchlings either on dark or on light substrates, using a split-brood design. Although the type of pronotal pattern changed mainly in response to nymphal development, the basic color was strongly influenced by the substrate color. In both species, black and dark olive color morphs were found more frequently on the dark substrate, whereas the gray color morph dominated on the light substrate. These findings have considerable implications for our understanding of color morph evolution as they show that color polymorphism may not only be maintained by natural selection acting on discrete color morphs, but also by phenotypic plasticity, which enables organisms to adjust to the environmental conditions experienced during ontogeny. This facultative morphology is opposing to the prevailing view of color morph adaptation, which assumes a purely genetic determination and co-evolution of discrete color morphs with life history traits. [source] Progress towards understanding the fate of plasmids in bacterial communitiesFEMS MICROBIOLOGY ECOLOGY, Issue 1 2008Frances R. Slater Abstract Plasmid-mediated horizontal gene transfer influences bacterial community structure and evolution. However, an understanding of the forces which dictate the fate of plasmids in bacterial populations remains elusive. This is in part due to the enormous diversity of plasmids, in terms of size, structure, transmission, evolutionary history and accessory phenotypes, coupled with the lack of a standard theoretical framework within which to investigate them. This review discusses how ecological factors, such as spatial structure and temporal fluctuations, shape both the population dynamics and the physical features of plasmids. Novel data indicate that larger plasmids are more likely to be harboured by hosts in complex environments. Plasmid size may therefore be determined by environmentally mediated fitness trade-offs. As the correlation between replicon size and complexity of environment is similar for plasmids and chromosomes, plasmids could be used as tractable tools to investigate the influence of ecological factors on chromosomes. Parallels are drawn between plasmids and bacterial facultative symbionts, including the evolution of some members of both groups to a more obligate relationship with their host. The similarity between the influences of ecological factors on plasmids and bacterial symbionts suggests that it may be appropriate to study plasmids within a classical ecological framework. [source] Consequence of herbivory for the fitness cost of herbicide resistance: photosynthetic variation in the context of plant,herbivore interactionsJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 2 2005A. J. Gassmann Abstract The cost of adaptations may depend on environmental conditions. We consider how the fitness cost of resistance to the herbicide triazine in Amaranthus hybridus interacts with folivory from the beetle Disonycha glabrata. Triazine-resistant (TR) genotypes suffer a fitness cost because of a pleiotropic reduction in the light reaction of photosynthesis, which in turn often leads to a reduction in photosynthetic rate. We found that the fitness cost of triazine resistance was 360% greater in the presence than absence of D. glabrata. This resulted from multiple phenotypic trade-offs, with TR plants suffering greater herbivory and displaying a diminished tolerance of damage. Our work highlights the importance of incorporating appropriate ecological variation into the assessment of fitness trade-offs. The results of this study also illustrate the potential for herbivores to impose selection on photosynthetic variation, and for variation in resource acquisition to obscure fitness costs. [source] The genetic architecture of disease resistance in plants and the maintenance of recombination by parasitesMOLECULAR ECOLOGY, Issue 1 2001Paula X. Kover Abstract Parasites represent strong selection on host populations because they are ubiquitous and can drastically reduce host fitness. It has been hypothesized that parasite selection could explain the widespread occurrence of recombination because it is a coevolving force that favours new genetic combinations in the host. A review of deterministic models for the maintenance of recombination reveals that for recombination to be favoured, multiple genes that interact with each other must be under selection. To evaluate whether parasite selection can explain the maintenance of recombination, we review 85 studies that investigated the genetic architecture of plant disease resistance and discuss whether they conform to the requirements that emerge from theoretical models. General characteristics of disease resistance in plants and problems in evaluating resistance experimentally are also discussed. We found strong evidence that disease resistance in plants is determined by multiple loci. Furthermore, in most cases where loci were tested for interactions, epistasis between loci that affect resistance was found. However, we found weak support for the idea that specific allelic combinations determine resistance to different host genotypes and there was little data on whether epistasis between resistance genes is negative or positive. Thus, the current data indicate that it is possible that parasite selection can favour recombination, but more studies in natural populations that specifically address the nature of the interactions between resistance genes are necessary. The data summarized here suggest that disease resistance is a complex trait and that environmental effects and fitness trade-offs should be considered in future models of the coevolutionary dynamics of host and parasites. [source] Pleiotropic effects of environment-specific adaptation in Arabidopsis thalianaNEW PHYTOLOGIST, Issue 3 2009P. X. Kover Summary ,,Local adaptation may be important for the preservation of genetic diversity and the promotion of speciation. However, local adaptation may also constrain establishment in different environments. The consequences of local adaptation depend strongly on the pleiotropic effects of the genes involved in adaptation. ,,Here, we investigated the pleiotropic effects of the genetic response to selection in outbred lines of Arabidopsis artificially selected to flower earlier under both winter- and spring-annual simulated conditions. The consequences of adaptation were evaluated by reciprocally transplanting selected and control lines between the two conditions. ,,Selected lines always flower earlier than their controls, independent of growing conditions. However, selected lines, growing in the same condition in which they were selected, flower earlier than plants selected in the alternative environment. Plants selected to flower earlier in spring produce more fruits than controls when growing in the spring, and less fruits when growing in the winter; indicating that local adaptation has negative pleiotropic effects in another environment. ,,Our results indicate that local adaptation can arise even when selection targets the same trait in the same direction. Furthermore, it suggests that adaptation under the two different environments can generate fitness trade-offs that can maintain genetic variation for flowering time. [source] |