Home About us Contact | |||
Firing Rate (firing + rate)
Kinds of Firing Rate Selected AbstractsEffect of nicotine on the pelvic afferent nerve activity and bladder pressure in ratsINTERNATIONAL JOURNAL OF UROLOGY, Issue 8 2009Hitoshi Kontani Objectives: To record afferent nerve activity and bladder pressure in anesthetized male rats and to investigate whether increased afferent nerve activity induced by nicotine is able to evoke reflex bladder contractions. Methods: Using continuous infusion cystometrography, bladder pressure was measured via a bladder cannula. Afferent activity was recorded in the uncut L6 dorsal root. Nicotine was injected intra-arterially through a cannula placed near the bifurcation of the internal iliac artery a few minutes after micturition. Results: Nicotine (0.15,1.5 µmol) evoked a marked elevation of afferent discharge without a simultaneous increase in bladder pressure. Bladder contractions appeared about 43 and 19 s after bolus injection of nicotine at 0.45 and 1.5 µmol, respectively. Firing rates of afferent nerves were reduced when the contraction appeared. Continuous infusion of nicotine at 0.75 µmol/min for 20 min evoked marked elevation of afferent discharge, which was maintained during infusion of nicotine and after it had been withdrawn. Repetitive contractions were observed thereafter and disappeared when the L6 dorsal roots were bilaterally resected. Conclusions: A transient increase in afferent discharges induced by bolus injection of nicotine was unable to evoke reflex bladder contraction. Repetitive bladder contractions after withdrawal of continuous nicotine infusion were induced in a reflex manner by the increased afferent activity. [source] The brain angiotensin IV/AT4 receptor system as a new target for the treatment of Alzheimer's diseaseDRUG DEVELOPMENT RESEARCH, Issue 7 2009John W. Wright Abstract The brain renin-angiotensin system (RAS) regulates several physiologies including blood pressure, body sodium and water balance, cyclicity of reproductive hormones and related sexual behaviors, and the release of pituitary gland hormones. These physiologies are under the control of the angiotensin II (AngII)/AT1 receptor subtype system. The AngII/AT2 receptor subtype system is expressed during fetal development and is less abundant in the adult. This system appears to oppose growth responses facilitated by activation of the AT1 receptor. There is a growing list of nontraditional physiologies mediated by the most recently discovered angiotensin IV (AngIV)/AT4 receptor subtype system that include the regulation of blood flow, modulation of exploratory behaviors, involvement in stress responses and seizure, and a role in learning and memory acquisition. There is evidence to support an inhibitory influence by AngII, and a facilitory role by AngIV, on neuronal firing rate, long-term potentiation, and associative and spatial learning and memory. These findings suggest an important role for the RAS, and the AT4 receptor in particular, in normal cognitive processing and provide the stimulus for developing drugs that penetrate the blood-brain barrier to interact with this brain receptor in the treatment of dysfunctional memory. Drug Dev Res 70: 472,480, 2009. © 2009 Wiley-Liss, Inc. [source] PRECLINICAL STUDY: Electroacupuncture treatment reverses morphine-induced physiological changes in dopaminergic neurons within the ventral tegmental areaADDICTION BIOLOGY, Issue 4 2009Ling Hu ABSTRACT Chronic morphine administration decreases the size of dopamine (DA) neurons in the ventral tegmental area (VTA). These transient morphological changes are accompanied by a reduced sensitivity of morphine-induced conditioned place preference (CPP) after chronic exposure to the drug. In this study we examined alterations in the firing rate of DAergic neurons by means of extracellular recording following chronic morphine exposure and applied 100 Hz electroacupuncture (EA) treatment to reverse the reduced firing rate of these neurons. In the first set of experiments we show that in rats, which received chronic morphine treatment for 14 days, a small dose of morphine was not able to induce a CPP response anymore. However, the sensitivity to morphine was reinstated by consecutive EA treatment for 10 days. The electrophysiological response of VTA DA neurons to morphine was markedly reduced in chronic morphine-treated rats compared to saline-treated controls. A substantial recovery of the reactivity of VTA DA neurons to morphine was observed in rats that received 100 Hz EA for 10 days. Our findings suggest that 100 Hz EA is a potential therapy for the treatment of opiate addiction by normalizing the activity of VTA DA neurons. [source] Computational significance of transient dynamics in cortical networksEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2008Daniel Durstewitz Abstract Neural responses are most often characterized in terms of the sets of environmental or internal conditions or stimuli with which their firing rate are correlated increases or decreases. Their transient (nonstationary) temporal profiles of activity have received comparatively less attention. Similarly, the computational framework of attractor neural networks puts most emphasis on the representational or computational properties of the stable states of a neural system. Here we review a couple of neurophysiological observations and computational ideas that shift the focus to the transient dynamics of neural systems. We argue that there are many situations in which the transient neural behaviour, while hopping between different attractor states or moving along ,attractor ruins', carries most of the computational and/or behavioural significance, rather than the attractor states eventually reached. Such transients may be related to the computation of temporally precise predictions or the probabilistic transitions among choice options, accounting for Weber's law in decision-making tasks. Finally, we conclude with a more general perspective on the role of transient dynamics in the brain, promoting the view that brain activity is characterized by a high-dimensional chaotic ground state from which transient spatiotemporal patterns (metastable states) briefly emerge. Neural computation has to exploit the itinerant dynamics between these states. [source] Substance P excites globus pallidus neurons in vivoEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2007Qiao-Ling Cui Abstract Substance P is a member of the neurokinin family. Previous studies have reported the existence of substance P and its high-affinity receptor, neurokinin-1 receptor, in globus pallidus. Employing in vivo extracellular recording combined with behavioural tests, the effects of substance P in globus pallidus of rats were studied. Micropressure ejection of the selective neurokinin-1 receptor agonist [Sar9,Met(O2)11] substance P increased the spontaneous firing rate of pallidal neurons in a concentration-dependent manner, with increases of 27.3% at 0.01, 33.4% at 0.03, 45.5% at 0.1, 38.4% at 0.3 and 36.4% at 1.0 mm. The selective neurokinin-1 receptor antagonist SR140333B prevented the excitatory effects induced by [Sar9,Met(O2)11] substance P. In behaving rats, we observed the postural effects of neurokinin-1 receptor activation in the globus pallidus. Consistent with electrophysiological results, unilateral microinjection of [Sar9,Met(O2)11] substance P (0.1 mm) led to a SR140333B-sensitive contralateral deflection in the presence of systemic haloperidol administration. Combining electrophysiological and behavioural findings, we concluded that substance P produces excitatory effects on globus pallidus neurons via neurokinin-1 receptors. [source] Context-dependent behavioural and neuronal sensitization in striatum to MDMA (ecstasy) administration in ratsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2006Kevin T. Ball Abstract To investigate the neuronal mechanisms underlying the behavioural alterations that accompany repeated exposure to MDMA (ecstasy), we recorded the activity of >,200 striatal units in response to multiple, intermittent, locomotor-activating doses (5.0 mg/kg) of MDMA. Rats were treated with once-daily injections of either saline or MDMA for 5 days when housed in their home cage, followed by a challenge injection 3,5 days later when housed in a recording chamber. Because contextual drug associations might be particularly important to the expression of behavioural sensitization to chronic MDMA, a separate group of rats received repeated injections of MDMA alternately in the recording chamber or home cage, according to the above timeline. A sensitized locomotor response was observed only in rats that had previously experienced MDMA in the context of the recording chamber, and only on the challenge day. These sensitized animals also showed a decreased basal firing rate in neurons that were subsequently excited by MDMA when compared with the same category of neurons earlier in the treatment regimen. This resulted in a greater percentage increase from the baseline firing rate on the challenge day compared with the first and fifth days of treatment, even though this trend was not evident with an analysis of absolute firing rate. These results strongly support a role for context in the expression of MDMA-induced locomotor sensitization, and implicate striatal involvement in the neurobehavioural changes associated with the repeated use of MDMA. [source] Biochemical and electrophysiological changes of substantia nigra pars reticulata driven by subthalamic stimulation in patients with Parkinson's diseaseEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2006Salvatore Galati Abstract To understand the events underlying the clinical efficacy of deep brain stimulation (DBS) of the subthalamic nucleus (STN), electrophysiological recordings and microdialysis evaluations were carried out in the substantia nigra pars reticulata (SNr), one of the two basal ganglia (BG) nuclei targeted by STN output, in patients with Parkinson's disease (PD). Clinically effective STN-DBS caused a significant increase of the SNr firing rate. The poststimulus histogram (PSTH) showed an excitation peak at 1.92,3.85 ms after the STN stimulus. The spontaneous discharge of SNr neurons was driven at the frequency of the stimulation (130 Hz), as shown in the autocorrelograms (AutoCrl). The fast Fourier transform (FFT) analysis showed a peak at 130 Hz, and a less pronounced second one at 260 Hz. Accordingly, in the distribution of the interspike intervals (ISIs), the mode was earlier, and skewness more asymmetric. Biochemically, the increased excitatory driving from the STN was reflected by a clear-cut increase in cyclic guanosine 3',5'-monophosphate (cGMP) levels in the SNr. These results indicate that the beneficial effect of DBS in PD patients is paralleled with a stimulus-synchronized activation of the STN target, SNr. Our findings suggest that, during STN-DBS, a critical change towards a high-frequency oscillatory discharge occurs. [source] Development of tinnitus-related neuronal hyperactivity through homeostatic plasticity after hearing loss: a computational modelEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2006Roland Schaette Tinnitus, the perception of a sound in the absence of acoustic stimulation, is often associated with hearing loss. Animal studies indicate that hearing loss through cochlear damage can lead to behavioral signs of tinnitus that are correlated with pathologically increased spontaneous firing rates, or hyperactivity, of neurons in the auditory pathway. Mechanisms that lead to the development of this hyperactivity, however, have remained unclear. We address this question by using a computational model of auditory nerve fibers and downstream auditory neurons. The key idea is that mean firing rates of these neurons are stabilized through a homeostatic plasticity mechanism. This homeostatic compensation can give rise to hyperactivity in the model neurons if the healthy ratio between mean and spontaneous firing rate of the auditory nerve is decreased, for example through a loss of outer hair cells or damage to hair cell stereocilia. Homeostasis can also amplify non-auditory inputs, which then contribute to hyperactivity. Our computational model predicts how appropriate additional acoustic stimulation can reverse the development of such hyperactivity, which could provide a new basis for treatment strategies. [source] Modulatory action of acetylcholine on striatal neurons: microiontophoretic study in awake, unrestrained ratsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2003Franēois Windels Abstract Cholinergic interneurons innervate virtually all medium spiny striatal cells, but the relevance of this input in regulating the activity and afferent responsiveness of these cells remains unclear. Studies in anaesthetized animals and slice preparations have shown that iontophoretic acetylcholine (ACh) either weakly excites or inhibits striatal neurons. These differential responses may reflect cholinergic receptor heterogeneity but may be also related to the different activity states of recorded units and different afferent inputs specific in each preparation. Single-unit recording was combined with iontophoresis in awake, unrestrained rats to examine the effects of ACh and selective muscarinic (oxotremorine M or Oxo-M) and nicotinic agonists (nicotine or NIC) on dorsal and ventral striatal neurons. These effects were tested on naturally silent, spontaneously active and glutamate-stimulated units. We found that iontophoretic ACh primarily inhibited spontaneously active and glutamate-stimulated units; the direction of the ACh response, however, was dependent on the firing rate. The effects of ACh were generally mimicked by Oxo-M and, surprisingly, by NIC, which is known to excite units in most central structures, including striatal neurons in anaesthetized preparation. Given that NIC receptors are absent on striatal cells but located primarily on dopamine terminals, we assessed the effects of NIC after complete blockade of dopamine receptors induced by systemic administration of a mixture of D1 and D2 antagonists. During dopamine receptor blockade the number of NIC-induced inhibitions dramatically decreased and NIC had mainly excitatory effects on striatal neurons. Thus, our data suggest that under physiologically relevant conditions ACh acts as a state-dependent neuromodulator, and its action involves not only postsynaptic but also presynaptic cholinoreceptors located on dopamine- and glutamate-containing terminals. [source] SHORT COMMUNICATION Inhibition of GABAergic neurotransmission in the ventral tegmental area by cannabinoidsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2002Bela Szabo Abstract It was shown recently that ,9-tetrahydrocannabinol, like several other drugs eliciting euphoria, stimulates dopaminergic neurons projecting from the ventral tegmental area (VTA) to the nucleus accumbens. The aim of the present work was to clarify the mechanism of this stimulatory effect. Our hypothesis was that cannabinoids depress the GABAergic inhibition of dopaminergic neurons in the VTA. Electrophysiological properties of VTA neurons in rat coronal midbrain slices were studied with the patch-clamp technique. GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) were evoked by electrical stimulation in the vicinity of the recorded neurons. The amplitude of IPSCs was depressed by the synthetic mixed CB1/CB2 cannabinoid receptor agonist WIN55212-2 (10,6 and 10,5 m). The CB1 cannabinoid receptor antagonist SR141716A (10,6 m) prevented the inhibition produced by WIN55212-2 (10,5 m). Two observations showed that IPSCs were depressed with a presynaptic mechanism. WIN55212-2 (10,5 m) did not change the amplitude of miniature IPSCs recorded in the presence of tetrodotoxin. Currents evoked by pressure ejection of muscimol from a pipette were also not changed by WIN55212-2 (10,5 m). The results indicate that activation of CB1 cannabinoid receptors inhibits GABAergic neurotransmission in the VTA with a presynaptic mechanism. Depression of the GABAergic inhibitory input of dopaminergic neurons would increase their firing rate in vivo. Accordingly, dopamine release in the projection region of VTA neurons, the nucleus accumbens, would also increase. [source] Analysis of the function of GABAB receptors on inhibitory afferent neurons of Purkinje cells in the cerebellar cortex of the ratEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2002Marta Than Abstract Purkinje cells, the output neurons of the cerebellar cortex, receive inhibitory input from basket, stellate and neighbouring Purkinje cells. The aim of the present study was to clarify the role of GABAB receptors on neurons giving inhibitory input to Purkinje cells. In sagittal slices prepared from the cerebellar vermis of the rat, the GABAB receptor agonist baclofen lowered the frequency and amplitude of spontaneous inhibitory postsynaptic currents (IPSCs) recorded in Purkinje cells. These effects were prevented by the GABAB receptor antagonist CGP 55845. Two mechanisms were involved in the depression of the inhibitory input to Purkinje cells. The first mechanism was suppression of the firing of basket, stellate and Purkinje cells. The second mechanism was presynaptic inhibition of GABA release from terminals of the afferent axons. This was indicated by the finding that baclofen decreased the amplitude of IPSCs occurring in Purkinje cells synchronously with action potentials recorded in basket cells. A further support for the presynaptic inhibition is the observation that baclofen decreased the amplitude of autoreceptor currents which are due to activation of GABAA autoreceptors at axon terminals of basket cells by synaptically released GABA. The presynaptic inhibition was partly due to direct inhibition of the vesicular release mechanism, because baclofen lowered the frequency of miniature IPSCs recorded in Purkinje cells in the presence of cadmium and in the presence of tetrodotoxin plus ionomycin. The results show that activation of GABAB receptors decreased GABAA receptor-mediated synaptic input to cerebellar Purkinje cells both by lowering the firing rate of the inhibitory input neurons and by inhibiting GABA release from their axon terminals with a presynaptic mechanism. [source] Effects of cannabinoids on prefrontal neuronal responses to ventral tegmental area stimulationEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2001Marco Pistis Abstract Cannabinoids activate the firing of mesoprefrontocortical dopamine neurons and release dopamine in the prefrontal cortex. This study was undertaken with the aim of clarifying the interaction between cannabinoids and mesocortical system in the prefrontal cortex. The effect of ,9 -tetrahydrocannabinol (,9 -THC) and the synthetic CB1 agonist WIN55,212,2 (WIN) was studied by extracellular single unit recordings, in chloral hydrate anaesthetised rats, on the spontaneous activity of pyramidal neurons and on the inhibition produced on these neurons by the electrical stimulation of the ventral tegmental area (VTA). Intravenously administered ,9 -THC and WIN (1.0 and 0.5 mg/kg, respectively), increased the firing rate of pyramidal neurons projecting to the VTA. VTA stimulation produced a phasic inhibition (167 ± 6 ms) in 79% of prefrontal cortex pyramidal neurons. ,9 -THC and WIN reverted this inhibition in 73% and 100% of the neurons tested, respectively. The subsequent administration of the selective CB1 antagonist SR141716A (1 mg/kg) readily suppressed the effects of both cannabinoids and restored the inhibitory response to VTA stimulation. Moreover, when administered alone, SR141716A prolonged the inhibition in 55.6% of the neurons tested. The results indicate that stimulation of CB1 receptors by cannabinoids results in an enhanced excitability of prefrontal cortex pyramidal neurons as indexed by the suppression of the inhibitory effect of VTA stimulation and by the increase in firing rate of antidromically identified neurons projecting to the VTA. Furthermore, our results support the view that endogenous cannabinoids exert a negative control on dopamine activity in the prefrontal cortex. This study may be relevant in helping to understand the influence of cannabinoids on cognitive processes mediated by the prefrontal cortex. [source] Electrophysiological and behavioural evidence for an antagonistic modulatory role of adenosine A2A receptors in dopamine D2 receptor regulation in the rat dopamine-denervated striatumEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2000Ingrid Strömberg Abstract It has been shown that striatal adenosine A2A receptors can antagonistically interact with dopamine D2 receptors at the membrane level leading to a decrease in the affinity and efficacy of D2 receptors. Extracellular recordings and rotational behaviour were employed to obtain a correlate to these findings in an animal model of Parkinson's disease (PD). The recordings were performed in rats with unilateral 6-hydroxydopamine (6-OHDA)-induced catecholamine depletion. While recording in the dopamine-depleted striatum, local applications of the dopamine D2 agonist quinpirole reduced neuronal activity. However, when the adenosine A2A antagonist MSX-3 was applied simultaneously with quinpirole, the inhibition of neuronal firing seen after quinpirole alone was significantly potentiated (P < 0.001, n = 11). In contrast, local application of CGS 21680 attenuated the effect of quinpirole. The doses of MSX-3 and CGS 21680 used to achieve the modulation of quinpirole action had no effect per se on striatal neuronal firing. Furthermore, rotational behaviour revealed that MSX-3 dose-dependently increased the number of turns when administrated together with a threshold dose of quinpirole while no enhancement was achieved when MSX-3 was combined with SKF 38393. MSX-3 alone did not induce rotational behaviour. In conclusion, this study shows that low ineffective doses of MSX-3 enhance the effect of quinpirole on striatal firing rate, while the A2A agonist exerts the opposite action. This mechanism gives a therapeutic potential to A2A antagonists in the treatment of PD by enhancing D2 receptor function. [source] Mirtazapine enhances frontocortical dopaminergic and corticolimbic adrenergic, but not serotonergic, transmission by blockade of ,2 -adrenergic and serotonin2C receptors: a comparison with citalopramEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2000M. J. Millan Abstract Mirtazapine displayed marked affinity for cloned, human ,2A -adrenergic (AR) receptors at which it blocked noradrenaline (NA)-induced stimulation of guanosine-5,-O-(3-[35S]thio)-triphosphate ([35S]-GTP,S) binding. Similarly, mirtazapine showed high affinity for cloned, human serotonin (5-HT)2C receptors at which it abolished 5-HT-induced phosphoinositide generation. Alpha2 -AR antagonist properties were revealed in vivo by blockade of UK-14,304-induced antinociception, while antagonist actions at 5-HT2C receptors were demonstrated by blockade of Ro 60 0175-induced penile erections and discriminative stimulus properties. Mirtazapine showed negligible affinity for 5-HT reuptake sites, in contrast to the selective 5-HT reuptake inhibitor, citalopram. In freely moving rats, in the dorsal hippocampus, frontal cortex (FCX), nucleus accumbens and striatum, citalopram increased dialysate levels of 5-HT, but not dopamine (DA) and NA. On the contrary, mirtazapine markedly elevated dialysate levels of NA and, in FCX, DA, whereas 5-HT was not affected. Citalopram inhibited the firing rate of serotonergic neurons in dorsal raphe nucleus, but not of dopaminergic neurons in the ventral tegmental area, nor adrenergic neurons in the locus coeruleus. Mirtazapine, in contrast, enhanced the firing rate of dopaminergic and adrenergic, but not serotonergic, neurons. Following 2 weeks administration, the facilitatory influence of mirtazapine upon dialysate levels of DA and NA versus 5-HT in FCX was maintained, and the influence of citalopram upon FCX levels of 5-HT versus DA and NA was also unchanged. Moreover, citalopram still inhibited, and mirtazapine still failed to influence, dorsal raphe serotonergic neurons. In conclusion, in contrast to citalopram, mirtazapine reinforces frontocortical dopaminergic and corticolimbic adrenergic, but not serotonergic, transmission. These actions reflect antagonist properties at ,2A -AR and 5-HT2C receptors. [source] Diurnal rhythms in neurohypophysial functionEXPERIMENTAL PHYSIOLOGY, Issue 2000Mary L. Forsling The neurohypophysial hormones oxytocin and vasopressin show daily rhythms of secretion with elevated hormone release during the hours of sleep. This pattern can be modulated by ovarian steroids and alters with age. The pattern appears to be due in part to the nocturnal increase in melatonin secretion, which stimulates hormone release in man, while being inhibitory in the rat. Pinealectomy alters both the 24 h pattern of neurohypophysial hormone release in the rat and the firing rate of magnocellular supraoptic nucleus neurones. There is also a reduced hormone release in response to hypovolaemia and raised plasma sodium concentration compared to sham operated animals, with a smaller increase in neuronal activity, as determined by immediate-early gene expression. The normal responses can be restored by nocturnal administration of melatonin. Melatonin also influences the neurohypophysial hormone response in the human to known stimuli of release, such as raised plasma osmolality, exercise and insulin-induced hypoglycaemia. Recent studies have revealed that not only does the release of vasopressin and oxytocin vary over each 24 h, but the respective renal and pregnant uterine responses also show diurnal variations. [source] Lesions of the mammillary body region alter hippocampal movement signals and theta frequency: Implications for path integration modelsHIPPOCAMPUS, Issue 9 2008Patricia E. Sharp Abstract Cells throughout the hippocampal formation are involved in processing spatial information. These same cells also show an influence of locomotor activity, and these movement signals are thought to be critical for the path integration abilities of these cells. Nuclei in the mammillary region provide ascending influences to the hippocampal formation and have been implicated in influencing both hippocampal spatial and theta signals. Here, we report the effects of mammillary lesions on movement-related signals in several hippocampal subregions. We find first, as predicted by earlier work, these lesions cause an approximately 1 Hz reduction in the frequency of theta modulation of cell firing. According to recent theoretical work, this might, in turn, be expected to influence the size of hippocampal place fields. Our data do not confirm this prediction for any of the hippocampal regions examined. Second, we report lesion effects on the relationship between firing rate and running speed for the hippocampal cells. These lesions caused a reduction in both the slope and intercept of rate-by-speed functions for cells in the hippocampus and postsubiculum. Surprisingly, cells in subiculum showed an opposite effect, so that the excitatory influence of locomotion was enhanced. Path integration theories predict that the speed at which path integration occurs is related to the strength of this movement signal. In remarkable accordance with this prediction, we report that the timing of the place cell signals is slowed following mammillary lesions for hippocampal and postsubicular cells, but, in contrast, is speeded up for subicular cells. In fact, the timing for place signals across lesion condition and brain region is predicted by a single linear function which relates timing to the strength of the running speed signal. Thus, these data provide remarkable support for some aspects of current path integration theory, while posing a challenge for other aspects of these same theories. © 2008 Wiley-Liss, Inc. [source] Learning in a geometric model of place cell firingHIPPOCAMPUS, Issue 9 2007Caswell Barry Abstract Following Hartley et al. (Hartley et al. (2000) Hippocampus 10:369,379), we present a simple feed-forward model of place cell (PC) firing predicated on neocortical information regarding the environmental geometry surrounding the animal. Incorporating the idea of boundaries with distinct sensory qualities, we show that synaptic plasticity mediated by a BCM-like rule (Bienenstock et al. (1982) J Neurosci 2:32,48) produces PCs that encode position relative to specific extended landmarks. In an unchanging environment the model is shown to undergo an initial phase of learning, resulting in the formation of stable place fields. In familiar environments, perturbation of environmental cues produces graded changes in the firing rate and position of place fields. Model simulations are compared favorably with three sets of experimental data: (1) Results published by Barry et al. (Barry et al. (2006) Rev Neurosci 17:71,97) showing the slow disappearance of duplicate place fields produced when a barrier is placed into a familiar environment. (2) Rivard et al.'s (Rivard et al. (2004) J Gen Physiol 124:9,25) study showing a graded response in PC firing such that fields near to a centrally placed object encode space relative to the object, whereas more distant fields respond to the surrounding environment. (3) Fenton et al.'s (Fenton et al. (2000a) J Gen Physiol 116:191,209) observation that inconsistent rotation of cue cards produces parametric changes in place field positions. The merits of the model are discussed in terms of its extensibility and biological plausibility. © 2007 Wiley-Liss, Inc. [source] Contrasting roles of neural firing rate and local field potentials in human memoryHIPPOCAMPUS, Issue 8 2007Arne Ekstrom Abstract Recording the activity of neurons is a mainstay of animal memory research, while human recordings are generally limited to the activity of large ensembles of cells. The relationship between ensemble activity and neural firing rate during declarative memory processes, however, remains unclear. We recorded neurons and local field potentials (LFPs) simultaneously from the same sites in the human hippocampus and entorhinal cortex (ERC) in patients with implanted intracranial electrodes during a virtual taxi-driver task that also included a memory retrieval component. Neurons increased their firing rate in response to specific passengers or landmarks both during navigation and retrieval. Although we did not find item specificity in the broadband LFP, both ,- and ,-band LFPs increased power to specific items on a small but significant percent of channels. These responses, however, did not correlate with item-specific neural responses. To contrast item-specific responses with process-specific responses during memory, we compared neural and LFP responses during encoding (navigation) and retrieval (associative and item-specific recognition). A subset of neurons also altered firing rates nonspecifically while subjects viewed items during encoding. Interestingly, LFPs in the hippocampus and ERC increased in power nonspecifically while subjects viewed items during retrieval, more often during associative than item-recognition. Furthermore, we found no correlation between neural firing rate and broadband, ,-band, and ,-band LFPs during process-specific responses. Our findings suggest that neuronal firing and ensemble activity can be dissociated during encoding, item-maintenance, and retrieval in the human hippocampal area, likely relating to functional properties unique to this region. © 2007 Wiley-Liss, Inc. [source] Characterizing multiple independent behavioral correlates of cell firing in freely moving animalsHIPPOCAMPUS, Issue 2 2005Neil Burgess Abstract The heterogeneous sampling of behavioral states by freely moving animals hinders our ability to relate neuronal firing rates to behavioral variables by introducing dependencies between them. We specifically consider the animal's location and orientation, although our analyses may generalize to other behavioral variables, such as speed of movement. A maximum-likelihood approach is presented for producing estimates of the separate histograms relating firing rate to multiple independent causes. Examples show that the method can be used to avoid the artifactual behavioral correlates of place and head direction-cell firing produced by standard analyses; to characterize the independent influences of both location and orientation in a third cell type (Cacucci et al., 2004); and to demonstrate the location-independence of the directional firing of head-direction cells. © 2004 Wiley-Liss, Inc. [source] Stability of hippocampal place cell activity across the rat estrous cycle,HIPPOCAMPUS, Issue 2 2005Jennifer Tropp Abstract Findings from both in vitro and in vivo studies have shown that estrogen exerts pronounced effects on hippocampal morphology and physiology. The degree to which these molecular findings influence hippocampal processing in freely behaving animals is unclear. The present study assessed the effect of the estrous cycle on hippocampal place cells in naturally cycling rats during two behavioral states. Female Sprague-Dawley rats were trained to alternate on a U-shaped runway for food reinforcement. Single-unit recordings of hippocampal CA1 cells were conducted under two conditions: (1) at rest on a holder, and (2) running on the maze. Spatial firing characteristics of the cells were examined at different stages of the estrous cycle (i.e., diestrus, proestrus, and estrus). Specifically, information was collected on (1) mean firing rates; (2) basic place field parameters; and (3) changes in the firing dynamics of these cells (e.g., burst properties). The findings showed a decrease in mean firing rate on the maze during proestrus. However, other basic measures of spatial tuning and burst properties were unchanged. The current study suggests that there is relative stability of hippocampal place cells across the estrous cycle during a well-trained task. © 2004 Wiley-Liss, Inc. [source] Excitotoxic lesions of the pre- and parasubiculum disrupt the place fields of hippocampal pyramidal cellsHIPPOCAMPUS, Issue 1 2004Ping Liu Abstract To determine what influence the pre- and parasubiculum regions of the hippocampal formation have on neural representations within the dorsal hippocampus, single-unit recordings were made as rats with bilateral ibotenic acid lesions centered on the former regions (n = 4) or control surgeries (n = 3) foraged freely. Spatial firing specificity was measured using an information content procedure. Cells from lesioned animals (n = 57) provided significantly less spatial information than cells from control animals (n = 44). Whereas some degree of location-related activity (place fields) was observed in 98% of neurons recorded from control animals, it was observed in only 65% of the neurons from lesioned animals. The spatial resolution of the intact place fields appeared to be compromised in lesioned animals as a result of their having a higher firing rate outside the place field. These findings indicate that the pre- and parasubiculum regions have a major role in maintaining the specificity of the place field firing of hippocampal pyramidal cells. Since previous data indicate that these lesioned animals displayed delay-dependent deficits in spatial tasks, these findings also suggest that a disruption in place field activity may be a causal factor in this spatial memory deficit. © 2003 Wiley-Liss, Inc. [source] A thermal nonlinear dynamic model for water tube drum boilersINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 1 2010M. A. Habib Abstract A thermal model for the prediction of possible tube overheating was developed. The model incorporates a nonlinear state space dynamic model that captures the important physical interactions of the main variables of steam generation in naturally circulated water tube drum boilers. This paper provides an investigation of the dynamic effects of rapid rise in fuel flow rate (heat input) on the thermal and flow characteristics of the riser tubes in natural circulation water tube boilers. The system under consideration includes the drum, riser and downcomer as its major components. The dynamic response of the system's state variables due to rapid rises in fuel flow rates was investigated. The results show that the sudden rise in the firing rate is followed by an increase in the steam quality, which is accompanied by a decrease in the circulation rate as a result of increase in the pressure. The riser temperature increases slightly above the saturation temperature due to the increase in the steam temperature and due to the dynamic influence resulting from sudden increase in the heat flux. The present calculations of the water level in the drum provide good comparison with those in the literature. Copyright © 2009 John Wiley & Sons, Ltd. [source] Ethanol potentiates the function of the human dopamine transporter expressed in Xenopus oocytesJOURNAL OF NEUROCHEMISTRY, Issue 5 2001R. Dayne Mayfield Ethanol alters a variety of properties of brain dopaminergic neurons including firing rate, synthesis, release, and metabolism. Recent studies suggest that ethanol's action on central dopamine systems may also involve modulation of dopamine transporter (DAT) activity. The human DAT was expressed in Xenopus oocytes to examine directly the effects of ethanol on transporter function. [3H]Dopamine (100 nm) accumulation into DAT-expressing oocytes increased significantly in response to ethanol (10 min; 10,100 mm). In two-electrode voltage-clamp experiments, DAT-mediated currents were also enhanced significantly by ethanol (10,100 mm). The magnitude of the ethanol-induced potentiation of DAT function depended on ethanol exposure time and substrate concentration. Cell surface DAT binding ([3H]WIN 35,428; 4 nm) also increased as a function of ethanol exposure time. Thus, the increase in dopamine uptake was associated with a parallel increase in the number of DAT molecules expressed at the cell surface. These experiments demonstrate that DAT-mediated substrate translocation and substrate-associated ionic conductances are sensitive to intoxicating concentrations of ethanol and suggest that DAT may represent an important site of action for ethanol's effects on central dopaminergic transmission. A potential mechanism by which ethanol acts to enhance DAT function may involve regulation of DAT expression on the cell surface. [source] Vasopressin Preferentially Depresses Excitatory Over Inhibitory Synaptic Transmission in the Rat Supraoptic Nucleus In VitroJOURNAL OF NEUROENDOCRINOLOGY, Issue 4 2000Kombian1 Endogenous arginine-vasopressin (AVP) in the supraoptic nucleus is known to decrease the firing rate of some supraoptic nucleus neurones. To determine a possible mechanism by which this locally released AVP produces this change in neuronal excitability, we investigated the effects of AVP on evoked excitatory (e.p.s.c.) and inhibitory post-synaptic (i.p.s.c.) responses recorded in magnocellular neurones in a hypothalamic slice preparation, using the perforated-patch recording technique. Our data show that AVP produces a dose-dependent decrease in the evoked e.p.s.c. in about 80% of magnocellular neurones tested with an estimated EC50 of about 0.9 ,M. The maximum decrease in e.p.s.c. amplitude was about 31% of control and was obtained with an AVP concentration of 2 ,M. The AVP-induced synaptic depression was blocked by Manning Compound (MC), a non-selective antagonist of oxytocin (OXT) and vasopressin (AVP) receptors, but not by a selective OXT receptor antagonist. It was not mimicked by desmopressin (ddAVP), a V2-receptor subtype agonist. By contrast, AVP used at the same concentration (2 ,M), had no global effect on pharmacologically isolated i.p.s.c.s in the majority of magnocellular neurones tested. These results show that AVP acts in the supraoptic nucleus to reduce excitatory synaptic transmission to magnocellular neurones by activating a non-OXT receptor, presumably the V1 receptor subtype. [source] Behavioral and electrophysiological effects of 5-HT in globus pallidus of 6-hydroxydopamine lesioned ratsJOURNAL OF NEUROSCIENCE RESEARCH, Issue 7 2010Shu-Jing Zhang Abstract Anatomical studies have shown that the globus pallidus receives abundant 5-hydroxytryptamine (5-HT) innervations from raphe nuclei. 5-HT may occupy an important position in the modulation of motor function through its affect on the activity of globus pallidus. In the present study, intrapallidal microinjection of 5-HT (0.1 mM) alone did not induce any motor behavior or postural asymmetry in the unilateral 6-hydroxydopamine (6-OHDA)-lesioned rats. However, when infused concomitantly with a low dose of 3, 4-dihydroxyphenylalanine (L-DOPA, 3 mg/kg i.p.), which itself can induce modest contralateral rotational behavior, 5-HT significantly potentiated the number of contralateral rotations. To elucidate the cellular mechanism, in vivo extracellular recordings were performed to examine the effects of 5-HT on globus pallidus neurons. In normal rats, the predominant effect of micropressure ejection of 5-HT on pallidal neurons was excitation. In 6-OHDA-lesioned rats, although 5-HT increased the firing rate in most pallidal neurons, 5-HT-induced inhibitory effects was stronger than that on the unlesioned side as well as normal rats. Furthermore, 5-HT1B receptors are mainly involved in 5-HT-induced excitation while 5-HT1A receptors are involved in 5-HT-induced inhibition. The results suggest that 5-HT may potentiate the antiparkinsonian effect of L-DOPA through modulating the activity of globus pallidus. © 2009 Wiley-Liss, Inc. [source] Millisecond catalytic wall reactors: I. Radiant burnerAICHE JOURNAL, Issue 5 2001J. M. Redenius Short-contact-time reactors have potential for high throughput in reactors much smaller than their traditional counterparts. While they operate adiabatically, heat can be exchanged at short contact time by integrating heat exchange into the reactor. Hot effluent of exothermic reaction systems can be redirected over feed gases to recuperate a portion of the sensible heat. Placing catalyst directly on reactor walls eliminates the resistance to heat transfer in the thermal boundary layer so that heat released by combustion can be effectively coupled to an emitter, such as in a radiant burner. A radiant heater was constructed, operated, and simulated incorporating short contact time, energy recuperation, and a catalytic wall. This burner operated stably for many hours at a firing rate from ,50 to > 160 kW/m2 at a radiant temperature of 950 to 1,150 K at a radiant efficiency of ,60% with a residence time in the reacting zone of ,10 ms. This reactor was modeled using 2-D Navier-Stokes equations including detailed models for chemistry and heat transport. Temperature and compositions predicted agreed well with experimental measurements. [source] Acute and Chronic Ethanol Modulate Dopamine D2-Subtype Receptor Responses in Ventral Tegmental Area GABA NeuronsALCOHOLISM, Issue 5 2009Kimberly H. Ludlow Background:, Ventral tegmental area (VTA) ,-aminobutyric acid (GABA) neurons appear to be critical substrates underlying the acute and chronic effects of ethanol on dopamine (DA) neurotransmission in the mesocorticolimbic system implicated in drug reward. VTA GABA neuron firing rate is reduced by acute ethanol and enhanced by DA via D2 receptor activation. The objective of this study was to evaluate the role of D2 receptors in acute ethanol inhibition of VTA GABA neuron activity, as well as the adaptation of D2 receptors by chronic ethanol consumption. Methods:, Using electrophysiological methods, we evaluated the effects of intraperitoneal ethanol on DA activation of VTA GABA neurons, the effects of DA antagonists on ethanol inhibition of their firing rate, as well as adaptations in firing rate following chronic ethanol consumption. Using single cell quantitative RT-polymerase chain reaction (PCR), we evaluated the expression of VTA GABA neuron D2 receptors in rats consuming ethanol versus pair-fed controls. Results:, In acute ethanol studies, microelectrophoretic activation of VTA GABA neurons by DA was inhibited by acute intraperitoneal ethanol, and intravenous administration of the D2 antagonist eticlopride blocked ethanol suppression of VTA GABA neuron firing rate. In chronic ethanol studies, while there were no signs of withdrawal at 24 hours, or significant adaptation in firing rate or response to acute ethanol, there was a significant down-regulation in the expression of D2 receptors in ethanol-consuming rats versus pair-fed controls. Conclusions:, Inhibition of DA activation of VTA GABA neuron firing rate by ethanol, as well as eticlopride block of ethanol inhibition of VTA GABA neuron firing rate, suggests an interaction between ethanol and DA neurotransmission via D2 receptors, perhaps via enhanced DA release in the VTA subsequent to ethanol inhibition of GABA neurons. Down-regulation of VTA GABA neuron D2 receptors by chronic ethanol might result from persistent DA release onto GABA neurons. [source] Alcohol Inhibits Spontaneous Activity of Basolateral Amygdala Projection Neurons in the Rat: Involvement of the Endocannabinoid SystemALCOHOLISM, Issue 3 2008Simona Perra Background:, A large body of evidence indicates that the limbic system is involved in the neural processing underlying drug addiction. Among limbic regions, the basolateral nucleus of amygdala (BLA) is implicated in some aspects of the neurobiological mechanisms of drugs of abuse, including alcohol and cannabinoids. It is recently emerging that the endocannabinoid system is involved in many pharmacological and behavioral effects of alcohol. The BLA possesses a very high density of CB1 cannabinoid receptors, and endocannabinoids modulate forms of synaptic plasticity in this region. The aims of our study were first to investigate in vivo the sensitivity of BLA pyramidal neurons to alcohol and second to determine the role of the endocannabinoid system in the acute effects of alcohol. Methods:, We utilized extracellular single cell recordings in urethane anesthetized rats from BLA principal neurons, antidromically identified from their projection site in the nucleus accumbens. Results:, Alcohol (0.25 to 2.0 g/kg i.v.) induced a marked decrease in the spontaneous firing rate of BLA projecting neurons (51.1 ± 16% of baseline at 0.5 g/kg alcohol, p < 0.0001). The involvement of the endogenous cannabinoid system was investigated by administering the CB1 receptor antagonist SR141716A (rimonabant, SR) (1.0 mg/kg i.v.) before alcohol. SR per se did not significantly affect firing rate of BLA neurons, but it prevented the inhibition produced by alcohol (98 ± 18% of baseline firing at 0.5 g/kg alcohol, p < 0.01). Then, we studied the actions of alcohol following a chronic treatment with the CB1 agonist WIN55212-2 (WIN). Animals were administered WIN for 6.5 days (2.0 mg/kg, i.p. twice daily) and alcohol dose,response curves were carried out on firing rate of BLA neurons 24 hours following the last injection of the cannabinoid agonist. In WIN-treated animals the inhibitory effect of alcohol was significantly reduced as compared with controls (95 ± 16% of baseline firing at 0.5 g/kg, p < 0.05). Conclusions:, Our results provide evidence of the involvement of the endocannabinoid system in the effects of alcohol on BLA projection neurons. They also further point to the endocannabinoid system as a possible molecular target in the treatment of alcoholism. [source] Competing Presynaptic and Postsynaptic Effects of Ethanol on Cerebellar Purkinje NeuronsALCOHOLISM, Issue 8 2006Zhen Ming Background: Ethanol has actions on cerebellar Purkinje neurons that can result either in a net excitation or in inhibition of neuronal activity. The present study examines the interplay of presynaptic and postsynaptic mechanisms to determine the net effect of ethanol on the neuronal firing rate of cerebellar Purkinje neurons. Methods: Whole-cell voltage-clamp recording of miniature inhibitory postsynaptic currents (mIPSCs) from Purkinje neurons in cerebellar slices was used to examine the effect of ethanol on presynapticsynaptic release of , -aminobutyric acid (GABA) and glutamate. Extracellular recording was used to examine the net action of both presynaptic and postsynaptic effects of ethanol on the firing rate of Purkinje neurons. Results: Under whole-cell voltage clamp, the frequency of bicuculline-sensitive miniature postsynaptic currents (mIPSCs) was increased dose-dependently by 25, 50, and 100 mM ethanol without any change in amplitude or decay time. Despite this evidence of increased release of GABA by ethanol, application of 50 mM ethanol caused an increase in firing in some neurons and a decrease in firing in others with a nonrandom distribution. When both glutamatergic and GABAergic influences were removed by simultaneous application of 6-cyano-7-nitroquinoxaline-2,3-dione and picrotoxin, respectively, ethanol caused only an increase in firing rate. Conclusions: These data are consistent with a dual action of ethanol on cerebellar Purkinje neuron activity. Specifically, ethanol acts presynaptically to increase inhibition by release of GABA, while simultaneously acting postsynaptically to increase intrinsic excitatory drive. [source] Chronic Intermittent Ethanol Exposure During Adolescence Blocks Ethanol-Induced Inhibition of Spontaneously Active Hippocampal Pyramidal NeuronsALCOHOLISM, Issue 1 2006Sayaka Tokunaga Background: Binge alcohol drinking among adolescents has been a serious public health problem. A model of binge alcohol, chronic intermittent ethanol exposure (CIEE), during adolescence significantly attenuates ethanol-induced spatial memory deficits in rats. However, the attenuation was absent following a 12-day ethanol-free period. Since spatial memory is hippocampal dependent, a reduction in ethanol-induced spatial memory impairments may be due to a reduction in the ability of ethanol to inhibit the firing rate of single hippocampal pyramidal neurons following CIEE. Methods: Beginning on postnatal day 30 (P30), male adolescent Sprague-Dawley rats (Harlan) were administered 5.0 g/kg ethanol (n=10, CIEE-treated group) or an equivolume saline (n=10, CISE-treated group) every 48 hours for 20 days. Single hippocampal pyramidal neurons from 5 CIEE-treated rats and 5 CISE-treated rats were recorded on the day following completion of the chronic intermittent exposure procedure (animals now P50). Additionally, neurons from 5 CIEE-treated rats and 5 CISE-treated rats were recorded 12 days after the completion of the chronic intermittent exposure procedure (animals now P62). Results: Ethanol exposure during adolescence completely blocked ethanol-induced inhibition of hippocampal pyramidal neurons in rats that were CIEE exposed. However, the effect of CIEE on hippocampal neurophysiology was time dependent. Specifically, neurons recorded from CIEE-treated rats after a 12-day ethanol-free period had similar maximal inhibition as neurons from CISE-treated animals, although the time to reach inhibition was significantly greater in neurons from CIEE-treated rats. Conclusion: Chronic ethanol exposure during adolescence produces a reduction, or tolerance, to ethanol-induced inhibition of hippocampal pyramidal neural activity. Although the tolerance was greatly reversed after a 12-day ethanol-free period, neurons from CIEE animals inhibited slower than neurons from CISE animals. Since the hippocampus is known to be involved not only in spatial memory, but also in many other types of memory formation, the altered hippocampal functions because of CIEE during adolescence should be taken as a serious warning for society. [source] |