Ficus Spp. (ficus + spp)

Distribution by Scientific Domains


Selected Abstracts


Chemical mediation and niche partitioning in non-pollinating fig-wasp communities

JOURNAL OF ANIMAL ECOLOGY, Issue 2 2007
MAGALI PROFFIT
Summary 1The parasitic chalcidoid wasps associated with the species-specific and obligatory pollination mutualisms between Ficus spp. and their agaonid wasp pollinators provide a good model to study the functional organization of communities. 2However, communities of non-pollinating fig wasps (NPFWs) remain little characterized, and their functioning and evolutionary dynamics are still poorly understood. 3We studied the communities of NPFWs associated with the monoecious F. racemosa and the dioecious F. hispida. Associated with these two fig species are a total of seven wasp species belonging to three genera. These species present contrasts in life history traits and in timing of oviposition. The species studied are thus broadly representative of the communities of NPFWs associated specifically with fig,pollinator mutualisms. 4In our study systems, there is temporal segregation of oviposition time among members of NPFW communities. 5We tested the role of volatile chemicals in the attraction of NPFWs associated with these two fig species, and tried to determine if chemical mediation can explain the organization of the communities. 6We conducted odour choice tests using a Y-tube olfactometer. All the NPFWs studied were shown to use volatile chemicals produced by the fig to locate their host. Furthermore, the signals used by each species depended on the phenological stage of the fig they exploit. 7Results demonstrated that the pattern of oviposition results from the utilization of volatile signals produced by figs that vary in their composition at different stages of fig development. Thus, chemical mediation allows resource partitioning in the NPFW communities associated with fig,pollinator mutualisms, and suggests hypotheses to explain coexistence in other parasite communities. [source]


Host-specificity and coevolution among pollinating and nonpollinating New World fig wasps

MOLECULAR ECOLOGY, Issue 9 2007
WENDY A. MARUSSICH
Abstract Figs (Ficus spp., Moraceae) and their pollinating wasps (Hymenoptera, Agaonidae, Chalcidoidea) constitute a classic example of an obligate plant-pollinator mutualism, and have become an ideal system for addressing questions on coevolution, speciation, and the maintenance of mutualisms. In addition to pollinating wasps, figs host several types of nonpollinating, parasitic wasps from a diverse array of Chalcid subfamilies with varied natural histories and ecological strategies (e.g. competitors, gallers, and parasitoids). Although a few recent studies have addressed the question of codivergence between specific genera of pollinating and nonpollinating fig wasps, no study has addressed the history of divergence of a fig wasp community comprised of multiple genera of wasps associated with a large number of sympatric fig hosts. Here, we conduct phylogenetic analyses of mitochondrial DNA sequences (COI) using 411 individuals from 69 pollinating and nonpollinating fig wasp species to assess relationships within and between five genera of fig wasps (Pegoscapus, Idarnes, Heterandrium, Aepocerus, Physothorax) associated with 17 species of New World Urostigma figs from section Americana. We show that host-switching and multiple wasp species per host are ubiquitous across Neotropical nonpollinating wasp genera. In spite of these findings, cophylogenetic analyses (treemap 1.0, treemap 2.02,, and parafit) reveal evidence of codivergence among fig wasps from different ecological guilds. Our findings further challenge the classical notion of strict-sense coevolution between figs and their associated wasps, and mirror conclusions from detailed molecular studies of other mutualisms that have revealed common patterns of diffuse coevolution and asymmetric specialization among the participants. [source]


Chimpanzee seed dispersal quantity in a tropical montane forest of Rwanda

AMERICAN JOURNAL OF PRIMATOLOGY, Issue 11 2009
Nicole D. Gross-Camp
Abstract We describe chimpanzee seed dispersal in the tropical montane forest of Nyungwe National Park (NNP), Rwanda, for a total of three years from January 1998 through May 2000 and May 2006 through March 2007. Relatively few studies have examined chimpanzee seed dispersal in montane communities where there are generally fewer fruiting tree species than in lowland forests. Such studies may reveal new insights into chimpanzee seed dispersal behaviors and the role that they play in forest regeneration processes. Chimpanzees are large-bodied, highly frugivorous, and tend to deposit the seeds of both large- and small-seeded fruits they consume in a viable state. We found that chimpanzees dispersed a total of 37 fruiting species (20 families) in their feces, 35% of which were large-seeded trees (,0.5,cm). A single large-seeded tree, Syzygium guineense, was the only species to be dispersed in both wadges and feces. Based on phenological patterns of the top five large-seeded tree species found in chimpanzee feces, our results indicate that chimpanzees do not choose fruits based on their availability. There was, however, a positive relationship between the presence of Ekebergia capensis seeds in chimpanzee feces and S. guineense seeds in chimpanzee wadges and their respective fruit availabilities. Our data reveal that proportionately fewer chimpanzee fecal samples at NNP contained seeds than that reported in two other communities in the Albertine Rift including one at mid-elevation and one in montane forest. As in other chimpanzee communities, seeds of Ficus spp. were the most common genus in NNP chimpanzee feces. Our data do not support previous studies that describe Ficus spp. as a fallback food for chimpanzees and highlights an intriguing relationship between chimpanzees and the large-seeded tree species, S. guineense. Am. J. Primatol. 71:901,911, 2009. © 2009 Wiley-Liss, Inc. [source]


Flowers Are an important food for small apes in southern Sumatra

AMERICAN JOURNAL OF PRIMATOLOGY, Issue 8 2009
Susan Lappan
Abstract Flowers are included in the diets of many primates, but are not generally regarded as making an important contribution to primate energy budgets. However, observations of a number of lemur, platyrrhine, and cercopithecine populations suggest that some flower species may function as key primate fallback foods in periods of low abundance of preferred foods (generally ripe fruits), and that flowers may be preferred foods in some cases. I report heavy reliance on flowers during some study months for a siamang (Symphalangus syndactylus) population in southern Sumatra. Siamangs at Way Canguk spent 12% of feeding time eating flowers from October 2000 to August 2002, and in 1 month flower-feeding time exceeded 40% of total feeding time. The overall availabilities of fig and nonfig fruits, flowers, and new leaves in the study area were not significant predictors of the proportion of time that siamangs spent consuming any plant part. However, flower-feeding time was highest in months when nonfig fruit-feeding time was lowest, and a switch from heavy reliance on fruit to substantial flower consumption was associated with a shift in activity patterns toward reduced energy expenditure, which is consistent with the interpretation that flowers may function as a fallback food for Way Canguk siamangs. Hydnocarpus gracilis, a plant from which siamangs only consume flowers, was the third-most-commonly consumed plant at Way Canguk (after Ficus spp. and Dracontomelon dao), and flowers from this plant were available in most months. It is possible that relatively high local availability of these important siamang plant foods is one factor promoting high siamang density in the study area. Am. J. Primatol. 71:624,635, 2009. © 2009 Wiley-Liss, Inc. [source]


Traditional nutritional analyses of figs overestimates intake of most nutrient fractions: a study of Ficus perforata consumed by howler monkeys (Alouatta palliata mexicana)

AMERICAN JOURNAL OF PRIMATOLOGY, Issue 5 2008
Tania Urquiza-Haas
Abstract There continue to remain uncertainty concerning the nutritional importance of figs (Ficus spp.) in the primate diet. Although studies have been performed on the nutritional analysis of fig pulp and seed fractions separately, there has not been an attempt to quantify the contribution of animal matter within figs. Here we report nutritional values of figs (Ficus perforata) (Urostigma) consumed by a troop of howler monkeys (Alouatta palliata mexicana). Separate nutritional assays were performed on the pulp, seed, and animal fraction. Whole-fig analyses significantly exaggerate the concentrations of all nutrients (lipids especially) as seeds, which represent a large proportion of the fig (45%), cannot be digested. Animal matter only represents 1% of the fig, and augments fig protein and lipid content by 0.44 and 0.30%, respectively. This represents the 11 and 9% of the fraction available for digestion. Differences in fig consumption were observed between age and sex classes (P=0.04) and periods of the day (P=0.001); females consumed more figs than males and the highest consumption of figs was observed in the afternoon. F. perforata figs may be an important component of the howler monkeys diet owing to their high content of water and calcium. Am. J. Primatol. 70:432,438, 2008. © 2007 Wiley-Liss, Inc. [source]


Flower visitors and pollination in the Oriental (Indomalayan) Region

BIOLOGICAL REVIEWS, Issue 3 2004
Richard T. Corlett
ABSTRACT Current knowledge of flower visitors and pollination in the Oriental Region is summarised. Much less is known about pollination than seed dispersal and the coverage of habitats and taxa in the region is very uneven. The available evidence suggests that pollination in lowland forests is dominated by highly social bees (mainly Trigona and Apis species), with beetles probably the next most important group, followed by other bees and flies. In comparison with the better-studied Neotropics, large solitary bees, moths, Lepidoptera and vertebrates are relatively less important. These differences are greatest in the canopy of the lowland dipterocarp forests of Southeast Asia, where they probably reflect the unique temporal pattern of floral resource availability resulting from,general flowering'at supra-annual intervals. Apis bees (but not Trigona species) are also important in most montane, subtropical and non-forest habitats. Apart from the figs (Ficus spp.), there are few well-documented examples of plant species visited by a single potential pollinator and most plant-pollinator relationships in the region appear to be relatively generalised. The small sizes of most pollinators and the absence of direct human exploitation probably make pollination mutualisms less vulnerable to failure as a result of human impacts than dispersal mutualisms, but more subtle impacts, as a result of altered gene flows, are likely to be widespread. On current evidence, pollination systems in the Oriental Region do not require any specific conservation action, but this review reinforces arguments for making the preservation (or restoration) of habitat connectivity the major focus of Oriental conservation. [source]


Fig-eating by vertebrate frugivores: a global review

BIOLOGICAL REVIEWS, Issue 4 2001
MIKE SHANAHAN
ABSTRACT The consumption of figs (the fruit of Ficus spp.; Moraceae) by vertebrates is reviewed using data from the literature, unpublished accounts and new field data from Borneo and Hong Kong. Records of frugivory from over 75 countries are presented for 260 Ficus species (approximately 30% of described species). Explanations are presented for geographical and taxonomic gaps in the otherwise extensive literature. In addition to a small number of reptiles and fishes, 1274 bird and mammal species in 523 genera and 92 families are known to eat figs. In terms of the number of species and genera of fig-eaters and the number of fig species eaten we identify the avian families interacting most with Ficus to be Columbidae, Psittacidae, Pycnonotidae, Bucerotidae, Sturnidae and Lybiidae. Among mammals, the major fig-eating families are Pteropodidae, Cercopithecidae, Sciuridae, Phyllostomidae and Cebidae. We assess the role these and other frugivores play in Ficus seed dispersal and identify fig-specialists. In most, but not all, cases fig specialists provide effective seed dispersal services to the Ficus species on which they feed. The diversity of fig-eaters is explained with respect to fig design and nutrient content, phenology of fig ripening and the diversity of fig presentation. Whilst at a gross level there exists considerable overlap between birds, arboreal mammals and fruit bats with regard to the fig species they consume, closer analysis, based on evidence from across the tropics, suggests that discrete guilds of Ficus species differentially attract subsets of sympatric frugivore communities. This dispersal guild structure is determined by interspecific differences in fig design and presentation. Throughout our examination of the fig-frugivore interaction we consider phylogenetic factors and make comparisons between large-scale biogeographical regions. Our dataset supports previous claims that Ficus is the most important plant genus for tropical frugivores. We explore the concept of figs as keystone resources and suggest criteria for future investigations of their dietary importance. Finally, fully referenced lists of frugivores recorded at each Ficus species and of Ficus species in the diet of each frugivore are presented as online appendices. In situations where ecological information is incomplete or its retrieval is impractical, this valuable resource will assist conservationists in evaluating the role of figs or their frugivores in tropical forest sites. [source]