Fibroblast Function (fibroblast + function)

Distribution by Scientific Domains


Selected Abstracts


Downregulation of protease-activated receptor-1 in human lung fibroblasts is specifically mediated by the prostaglandin E2 receptor EP2 through cAMP elevation and protein kinase A

FEBS JOURNAL, Issue 14 2008
Elena Sokolova
Many cellular functions of lung fibroblasts are controlled by protease-activated receptors (PARs). In fibrotic diseases, PAR-1 plays a major role in controlling fibroproliferative and inflammatory responses. Therefore, in these diseases, regulation of PAR-1 expression plays an important role. Using the selective prostaglandin EP2 receptor agonist butaprost and cAMP-elevating agents, we show here that prostaglandin (PG)E2, via the prostanoid receptor EP2 and subsequent cAMP elevation, downregulates mRNA and protein levels of PAR-1 in human lung fibroblasts. Under these conditions, the functional response of PAR-1 in fibroblasts is reduced. These effects are specific for PGE2. Activation of other receptors coupled to cAMP elevation, such as ,-adrenergic and adenosine receptors, does not reproduce the effects of PGE2. PGE2 -mediated downregulation of PAR-1 depends mainly on protein kinase A activity, but does not depend on another cAMP effector, the exchange protein activated by cAMP. PGE2 -induced reduction of PAR-1 level is not due to a decrease of PAR-1 mRNA stability, but rather to transcriptional regulation. The present results provide further insights into the therapeutic potential of PGE2 to specifically control fibroblast function in fibrotic diseases. [source]


FGF-2, IL-1, and TGF-, regulate fibroblast expression of S100A8

FEBS JOURNAL, Issue 11 2005
Farid Rahimi
Growth factors, including fibroblast growth factor-2 (FGF-2) and transforming growth factor-, (TGF-,) regulate fibroblast function, differentiation and proliferation. S100A8 and S100A9 are members of the S100 family of Ca2+ -binding proteins and are now accepted as markers of inflammation. They are expressed by keratinocytes and inflammatory cells in human/murine wounds and by appropriately activated macrophages, endothelial cells, epithelial cells and keratinocytes in vitro. In this study, regulation and expression of S100A8 and S100A9 were examined in fibroblasts. Endotoxin (LPS), interferon , (IFN,), tumour-necrosis factor (TNF) and TGF-, did not induce the S100A8 gene in murine fibroblasts whereas FGF-2 induced mRNA maximally after 12 h. The FGF-2 response was strongly enhanced and prolonged by heparin. Interleukin-1, (IL-1,) alone, or in synergy with FGF-2/heparin strongly induced the gene in 3T3 fibroblasts. S100A9 mRNA was not induced under any condition. Induction of S100A8 in the absence of S100A9 was confirmed in primary fibroblasts. S100A8 mRNA induction by FGF-2 and IL-1, was partially dependent on the mitogen-activated-protein-kinase pathway and dependent on new protein synthesis. FGF-2-responsive elements were distinct from the IL-1,-responsive elements in the S100A8 gene promoter. FGF-2-/heparin-induced, but not IL-1,-induced responses were significantly suppressed by TGF-,, possibly mediated by decreased mRNA stability. S100A8 in activated fibroblasts was mainly intracytoplasmic. Rat dermal wounds contained numerous S100A8-positive fibroblast-like cells 2 and 4 days post injury; numbers declined by 7 days. Up-regulation of S100A8 by FGF-2/IL-1,, down-regulation by TGF-,, and its time-dependent expression in wound fibroblasts suggest a role in fibroblast differentiation at sites of inflammation and repair. [source]


Actinobacillus actinomycetemcomitans lipopolysaccharide stimulates collagen phagocytosis by human gingival fibroblasts

MOLECULAR ORAL MICROBIOLOGY, Issue 3 2008
N. Takahashi
Introduction:, Collagen phagocytosis by fibroblasts is involved in the intracellular pathway related to collagen breakdown in soft connective tissues. The possible role of lipopolysaccharide (LPS) in regulating this fibroblast function has not been elucidated so we investigated the effect of LPS from Actinobacillus actinomycetemcomitans, a periodontopathic bacterium, on collagen phagocytic activity in human gingival fibroblasts and associated regulatory mechanisms. Methods:, LPS pretreatment stimulated binding of collagen-coated beads to cells and, subsequently, their internalization. Results:, The LPS-activated collagen phagocytic process was enhanced in the presence of the soluble form of CD14 (sCD14) or LPS-binding protein (LBP), while the LPS/LBP treatment activated Akt and induced actin reorganization. Furthermore, these LPS/LBP-induced effects were partially suppressed by adding phosphatidyl-inositol-3 kinase (PI3K) inhibitors. Conclusion:, These results suggest that A. actinomycetemcomitans LPS disturbs the homeostasis of collagen metabolism within gingival tissue by facilitating collagen phagocytosis by gingival fibroblasts, and serum sCD14 and LBP positively regulate the action of LPS. In addition, the PI3K/Akt signaling is thought to partially mediate the LPS/LBP-stimulated collagen phagocytic pathway, which may be dependent on actin cytoskeletal rearrangement. [source]


Association between enhanced type I collagen expression and epigenetic repression of the FLI1 gene in scleroderma fibroblasts

ARTHRITIS & RHEUMATISM, Issue 7 2006
Youngqing Wang
Objective Scleroderma (systemic sclerosis; SSc) is an autoimmune disease characterized by vasculopathy and widespread organ fibrosis. Altered fibroblast function, both in vivo and in vitro, is well documented and illustrated by augmented synthesis and deposition of extracellular matrix proteins. We undertook this study to investigate the possibility that epigenetic mechanisms mediate the emergence and persistence of the altered SSc fibroblast phenotype. Methods The effects of DNA methyltransferase and histone deacetylase inhibitors on collagen expression and the level of epigenetic mediators in fibroblasts were examined. The effects of transient transfection of SSc fibroblasts with FLI1 gene and normal cells with FLI1 antisense construct on collagen expression were determined. The methylation status of the FLI1 promoter was tested in cultured cells and in SSc and normal skin biopsy specimens. Results Increased levels of epigenetic mediators in SSc fibroblasts were noted. The addition of epigenetic inhibitors to cell cultures normalized collagen expression in SSc fibroblasts. The augmented collagen synthesis by SSc fibroblasts was linked to epigenetic repression of the collagen suppressor gene FLI1. Heavy methylation of the CpG islands in the FLI1 promoter region was demonstrated in SSc fibroblasts and skin biopsy specimens. Conclusion The results of this study indicate that epigenetic mechanisms may mediate the fibrotic manifestations of SSc. The signal transduction leading to the SSc fibrotic phenotype appears to converge on DNA methylation and histone deacetylation at the FLI1 gene. [source]


A novel type II membrane receptor up-regulated by IFN-, in fibroblasts functions in cell proliferation through the JAK-STAT signalling pathway

CELL PROLIFERATION, Issue 2 2006
L.-D. Liu
Structural analysis and immunofluorescence detection has suggested that this protein is located on the surface of fibroblasts, generally considered, a receptor. Cell proliferation assay has revealed that activation of TIIMPSC elevates the level of fibroblast proliferation. Further, examination of signal transduction has indicated that expression of this protein is up-regulated by IFN-, stimulation, and that it is involved in the regulation of fibroblast growth through the JAK-STAT signalling pathway. [source]