Fiber-matrix Adhesion (fiber-matrix + adhesion)

Distribution by Scientific Domains


Selected Abstracts


Dynamic mechanical and thermal properties of PE-EPDM based jute fiber composites

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2008
Gautam Sarkhel
Abstract The present investigation deals with the mechanical, thermal and viscoelastic properties of ternary composites based on low density polyethylene (LDPE)-ethylene,propylene,diene terpolymer (EPDM) blend and high density polyethylene (HDPE)-EPDM blend reinforced with short jute fibers. For all the untreated and compatibilizer treated composites, the variation of mechanical and viscoelastic properties as a function of fiber loading (10, 20 and 30 wt %) and compatibilizer concentration (1, 2, and 3%) were evaluated. The flexural strength, flexural modulus, impact strength, and hardness increased with increasing both the fiber loading and the compatibilizer dose. The storage modulus (E,) and loss modulus (E,) of the HDPE-EPDM/jute fiber composites were recorded higher compared to those of the LDPE-EPDM/jute fiber composites at all level of fiber loading and compatibilizer doses. The tan, (damping efficiency) spectra showed a strong influence of the fiber loading and compatibilizer dose on the , relaxation process of polymer matrix in the composite. The thermo-oxidative stability was significantly enhanced for treated composites compared to untreated composites. Scanning electron microscopy investigation confirmed that the higher values of mechanical and viscoelastic properties of the treated composites compared to untreated composites is caused by improvement of fiber-matrix adhesion as result of compatibilizer treatment. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]


Studies on mechanical properties of sisal fiber/phenol formaldehyde resin in-situ composites

POLYMER COMPOSITES, Issue 2 2009
Qiuhong Mu
Phenol formaldehyde resin (PF) reinforced with short sisal fibers (SF) were obtained by two methods, direct-mixing and polymerization filling. Impact and bending properties of resulting composites were compared. Under the same compression molding conditions, polymerization filled composites showed better mechanical properties than those of direct-mixed composites. The influences of fiber modifications on the mechanical properties of SF/PF in-situ (polymerization filled) composites have been investigated. Treated-SF-reinforced composites have better mechanical properties than those of untreated-SF-reinforced composites. The effects of SF on water absorption tendencies of SF/PF composites have also been studied. In addition, sisal/glass (SF/GF) hybrid PF composites of alkali-treated SF were prepared. Scanning electron microscopic studies were carried out to study the fiber-matrix adhesion. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers [source]


Adhesion improvement in glass fiber reinforced polyethylene composite via admicellar polymerization

POLYMER COMPOSITES, Issue 1 2003
Usa Somnuk
Admicellar polymerization (polymerization of monomer solubilized in adsorbed surfactant bilayers) has been used to form a thin film of polyethylene onto the surface of milled glass fibers using sodium dodecyl sulfate as the surfactant. The decrease in ethylene pressure was used to follow the solubilization and adsolubilization processes as well as the reaction processes. An increase in initiator (Na2S2O8) to surfactant ratio gave thicker and more uniform coatings of polymer onto the glass fiber surface according to SEM micrographs. Although a substantial amount of ethylene polymerized in solution according to the pressure drop, the decrease in pressure attributed to admicelle polymerization corresponded to the amount of polymer formed on the glass fiber, indicating little, if any, solution polymer deposited on the fibers. The admicellar-treated glass fiber was used to make composites with high-density polyethylene. The composites showed an increase in tensile and flexural strength over composites made from as-received glass fiber, indicating an improvement in the fiber-matrix adhesion of the admicellar-treated glass fiber. [source]


A review on interface modification and characterization of natural fiber reinforced plastic composites

POLYMER ENGINEERING & SCIENCE, Issue 9 2001
Jayamol George
An Important aspect with respect to optimal mechanical performance of fiber reinforced composites in general and durability in particular is the optimization of the interfacial bond between fiber and polymer matrix. The quality of the fiber-matrix interface is significant for the application of natural fibers as reinforcement for plastics. Since the fibers and matrices are chemically different, strong adhesion at their interfaces is needed for an effective transfer of stress and bond distribution throughout an Interface. A good compatibilization between cellulose fibers and non-polar matrices is achieved from polymeric chains that will favor entanglements and interdiffiusion with the matrix. This article gives a critical review on the physical and chemical treatment methods that improve the fiber-matrix adhesion and their characterization methods. [source]