Fiber Length (fiber + length)

Distribution by Scientific Domains
Distribution within Polymers and Materials Science


Selected Abstracts


Demyelination Induces the Decline of the Myelinated Fiber Length in Aged Rat White Matter

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 4 2009
Chen Li
Abstract To determine the exact reason for the age-related decline of the myelinated fiber length in white matter, we performed this study. In middle-aged rats, there was age-related loss of the unmyelinated fibers with large diameters. The demyelination of the myelinated fibers with small diameters in middle-aged rat white matter might make the age-related decrease of the unmyelinated fibers with small diameters in the white matter unnoticeable. However, in old-aged female rats, the unmyelinated fibers with large and small diameters significantly degenerated together and that the unmyelinated fibers formed from the demyelination of the myelinated fibers could not replenish the age-related loss of the unmyelinated fibers in the white matter. In conclusion, this study suggested that demyelination of myelinated fibers with small diameters in aged white matter might be the key mechanism of the significant decline of the myelinated fiber length in aged white matter. Anat Rec, 292:528,535, 2009. © 2009 Wiley-Liss, Inc. [source]


Comparative development of fiber in wild and cultivated cotton

EVOLUTION AND DEVELOPMENT, Issue 1 2001
Wendy L. Applequist
SUMMARY One of the most striking examples of plant hairs is the single-celled epidermal seed trichome of cultivated cotton. The developmental morphology of these commercial "fibers" has been well-characterized in Gossypium hirsutum, but little is known about the pattern and tempo of fiber development in wild Gossypium species, all of which have short, agronomically inferior fiber. To identify developmental differences that account for variation in fiber length, and to place these differences in a phylogenetic context, we conducted SEM studies of ovules at and near the time of flowering, and generated growth curves for cultivated and wild diploid and tetraploid species. Trichome initiation was found to be similar in all taxa, with few notable differences in trichome density or early growth. Developmental profiles of the fibers of most wild species are similar, with fiber elongation terminating at about two weeks post-anthesis. In contrast, growth is extended to three weeks in the A- and F-genome diploids. This prolonged elongation period is diagnosed as a key evolutionary event in the origin of long fiber. A second evolutionary innovation is that absolute growth rate is higher in species with long fibers. Domestication of species is associated with a further prolongation of elongation at both the diploid and allopolyploid levels, suggesting the effects of parallel artificial selection. Comparative analysis of fiber growth curves lends developmental support to previous quantitative genetic suggestions that genes for fiber "improvement" in tetraploid cotton were contributed by the agronomically inferior D-genome diploid parent. [source]


Fabrication and Drug Delivery of Ultrathin Mesoporous Bioactive Glass Hollow Fibers

ADVANCED FUNCTIONAL MATERIALS, Issue 9 2010
Youliang Hong
Abstract Ultrathin mesoporous bioactive glass hollow fibers (MBGHFs) fabricated using an electrospinning technique and combined with a phase-separation-induced agent, poly(ethylene oxide) (PEO), are described. The rapid solvent evaporation during electrospinning and the PEO-induced phase separation process demonstrated play vital roles in the formation of ultrathin bioactive glass fibers with hollow cores and mesoporous walls. Immersing the MBGHFs in simulated body fluid rapidly results in the development of a layer of enamel-like apatite mesocrystals at the fiber surfaces and apatite nanocrystals inside the hollow cores. Drug loading and release experiments indicate that the drug loading capacity and drug release behavior of the MBGHFs strongly depends on the fiber length. MBGHFs with fiber length >50,µm can become excellent carriers for drug delivery. The shortening of the fiber length reduces drug loading amounts and accelerates drug release. The MBGHFs reported here with sophisticated structure, high bioactivity, and good drug delivery capability can be a promising scaffold for hard tissue repair and wound healing when organized into 3D macroporous membranes. [source]


Multichannel surface electromyography in ergonomics: Potentialities and limits

HUMAN FACTORS AND ERGONOMICS IN MANUFACTURING & SERVICE INDUSTRIES, Issue 4 2010
Marco Gazzoni
Abstract The prevention of work-related musculoskeletal disorders is one of the main goals in ergonomics. Among others, surface electromyography (sEMG) is an important tool for the evaluation of risks related to work activity. Three main issues have been approached in ergonomics via sEMG: 1) the analysis of muscle activation, 2) the analysis of exerted forces and torques, and 3) the analysis of muscle fatigue. Many studies have been carried out in static conditions. In ergonomics, however, it is more relevant to study muscle activity and fatigue during real tasks that are, in general, dynamic. From isometric to dynamic contractions, the complexity of the interpretation of sEMG signals increases considerably. Changes in sEMG signals are related to the continuous modifications in force output, muscle fiber length, and relative position of surface electrodes and sources. To increase the reliability of the information extracted from sEMG, multichannel detection systems have been applied, showing the possibility of overcoming some limits of the standard technique. Some illustrative laboratory and field studies are reported in this work to illustrate the potentialities and the open problems in the use of multichannel sEMG in ergonomics. Case 1 is a laboratory study investigating the myoelectric manifestations of fatigue in the biceps brachii (BB) during dynamic elbow flexion/extension. Case 2 is a laboratory study investigating the myoelectric manifestations of fatigue during a repetitive lifting task. Case 3 is a field study, carried out in an automotive plant, investigating muscle activation during the welding of a car door. Many factors play a leading role in the correct interpretation of information provided by sEMG. Even though multichannel sEMG provides information able to improve the estimation of force and/or fatigue during working tasks, many problems related to the signal acquisition and interpretation are still open. Further improvements are necessary to develop multichannel sEMG into an effective tool supporting other methodologies for the evaluation of work-related risks. © 2010 Wiley Periodicals, Inc. [source]


Meniscus-Controlled Continuous Fabrication of Arrays and Rolls of Extremely Long Micro- and Nano-Fibers,

ADVANCED MATERIALS, Issue 4 2008
P. Suryavanshi
A direct-write nanomanufacturing technique is developed for the high-speed, continuous fabrication of micro- and nano-fibers made of soluble ionic solids in a low-humidity ambient environment. The process is based on the fast evaporation of solvent and the precipitation of solute in the nanoscale meniscus. Freestanding nanofibers, suspended or stacked nanofiber arrays, and even a continuously wound microfiber roll with a fiber length over 40 cm are fabricated. [source]


Optimized conditions for the grafting reaction of poly(methyl methacrylate) onto oil-palm empty fruit bunch fibers

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 2 2008
Aznizam Abu Bakar
Abstract This article describes the graft copolymerization of poly(methyl methacrylate) (PMMA) onto oil-palm empty fruit bunches (OPEFBs) with a fiber length of less than 75 ,m. The graft copolymerization was carried out under a nitrogen atmosphere by a free-radical initiation technique in an aqueous medium. Hydrogen peroxide and ferrous ions were used as a redox initiator/cocatalyst system. The PMMA homopolymer that formed during the reaction was removed from the grafted copolymers by Soxhlet extraction. Determining the effects of the reaction period, reaction temperature, and monomer concentration on the grafting percentage was the main objective, and they were investigated systematically. The optimum reaction period, reaction temperature, monomer concentration, and initiator concentration were 60 min, 50°C, 47.15 × 10,3 mol, and 3.92 × 10,3 mol, respectively. The maximum percentage of grafting achieved under these optimum conditions was 173%. The presence of PMMA functional groups on OPEFB and the enormous reduction of the hydroxyl-group absorption band in PMMA- g -OPEFB spectra provided evidence of the successful grafting reaction. The improvement of the thermal stability of PMMA- g -OPEFB also showed the optimal achievement of the grafting reaction of PMMA onto OPEFB. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]


Fiber breakage and dispersion in carbon-fiber-reinforced nylon 6/clay nanocomposites

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2007
Hu Zhou
Abstract In this paper, short carbon-fiber-reinforced nylon 6/clay nanocomposites are prepared via melt compounding, and fiber breakage and dispersion during processing are studied. The influences of clay and processing conditions on fiber breakage and dispersion are taken into consideration. It is found that the presence of organoclay can improve fiber dispersion, which is due to dispersion at the nanoscale of exfoliated clay sheets with large aspect ratio. The bimodal distribution of fiber length is observed in fiber-reinforced nanocomposites, which is similar to that in conventional fiber-reinforced composites. The improvement of fiber breakage at moderate organoclay loadings is also observed, which is ascribed to the rheological and lubricating effects induced by organoclay. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007 [source]


Draw ratio enhancement in nonisothermal melt spinning

AICHE JOURNAL, Issue 3 2009
Balram Suman
Abstract Nonisothermal melt spinning of materials having a step-like viscosity variation with temperature is studied in this work. A set of nonlinear equations is used to describe the fiber behavior and to obtain the draw ratio, the square of the ratio of the fiber diameter at the entrance to that at the exit of the fiber-spinning device. The fluid-flow equation is based on a slender-jet approximation, and external heating and cooling have been accounted for with a one-dimensional model in order to obtain the fiber temperature and viscosity along the fiber length. The model is similar to that used by Wylie et al. (J Fluid Mech. 2007;570:1,16) but accounts for inertia, shear stress at the fiber surface, surface tension, gravity, cooling, and larger heating rates. Steady-state analysis reveals that the draw ratio increases with an increase in the pulling force, passes through a maximum, and then starts increasing again, resulting in three possible pulling forces for the same draw ratio. However, linear stability analysis reveals that depending on the strength of heating and/or cooling, at most two of the steady states are stable. The stability analysis also predicts complicated oscillatory and nonoscillatory dynamical behavior as the pulling force varies. Nonlinear simulations reveal that an unstable system always tends to limit-cycle behavior. Systems predicted as stable by the linear stability analysis are also stable for large-amplitude perturbations. External heating is found to dramatically enhance the draw ratio of the melt-spinning process. The addition of a cooling section suppresses the draw ratio, but this can be compensated for with a higher heating strength. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


Interspecific variation in sternohyoideus muscle morphology in clariid catfishes: Functional implications for suction feeding,

JOURNAL OF MORPHOLOGY, Issue 3 2007
Sam Van Wassenbergh
Abstract Depression of the hyoid apparatus plays a crucial role in generating suction, especially in fishes with a dorso-ventrally flattened head shape. It is generally assumed that shortening of the sternohyoideus muscle, which connects the hyoid to the pectoral girdle, contributes to hyoid depression. However, a recent study on the clariid catfish Clarias gariepinus has shown that this muscle does not shorten but elongates during this phase through retraction of the pectoral girdle. Here, we test whether this pattern is general among clariid catfish, or if variation in the morphology of the sternohyoideus may result in a different sternohyoideus behavior during hyoid depression. First, sternohyoideus mass, effective cross-sectional area, fiber length and fiber diameter were measured and compared for four clariid species. Next, velocity and magnitude of hyoid depression during prey capture (from high-speed videos), as well as patterns of sternohyoideus strain were analyzed (from high-speed X-ray videos) in these species. While morphology and hyoid depression performance varied considerably among these species, only the species with the most massive sternohyoideus, Gymnallabes typus, showed shortening of the sternohyoideus muscle during the initial part of the expansive phase. The data for Channallabes apus demonstrate that increasing the magnitude of hyoid depression does not necessarily require a shortening of the m. sternohyoideus, as it shows elongation of this muscle during hyoid depression. J. Morphol., 2007. © 2007 Wiley-Liss, Inc. [source]


Muscular design in the equine interosseus muscle

JOURNAL OF MORPHOLOGY, Issue 6 2006
Carl Soffler
Abstract We studied the forelimb interosseus muscle in horses, Equus caballus, to determine the muscular properties inherent in its function. Some authors have speculated that the equine interosseus contains muscle fibers at birth only to undergo loss of these fibers through postnatal ontogeny. We describe the muscle fibers in eight interosseus specimens from adult horses. These fibers were studied histochemically using myosin ATPase studies and immunocytochemically using several antibodies directed against type I and type II myosin heavy chain antibodies. We determined that 95% of the fibers were type I, presumed slow-twitch fibers. All fibers exhibited normal morphological appearance in terms of fiber diameter and cross-sectional area, suggesting that the muscles are undergoing normal cycles of recruitment. SDS-PAGE studies of myosin heavy chain isoforms were consistent with these observations of primarily slow-twitch muscle. Fibers were determined to be ,800 ,m long when studied using nitric acid digestion protocols. Short fiber length combined with high pinnation angles suggest that the interosseus muscle is able to generate large amounts of force but can produce little work (measured as pulling the distal tendon proximally). While the equine interosseus muscle has undergone a general reduction of muscle content during its evolution, it remains composed of a significant muscular component that likely contributes to forelimb stability and elastic storage of energy during locomotion. J. Morphol. © 2006 Wiley-Liss, Inc. [source]


Comparative analysis of masseter fiber architecture in tree-gouging (Callithrix jacchus) and nongouging (Saguinus oedipus) callitrichids

JOURNAL OF MORPHOLOGY, Issue 3 2004
Andrea B. Taylor
Abstract Common marmosets (Callithrix jacchus) and cotton-top tamarins (Saguinus oedipus) (Callitrichidae, Primates) share a broadly similar diet of fruits, insects, and tree exudates. Common marmosets, however, differ from tamarins by actively gouging trees with their anterior teeth to elicit tree exudate flow. During tree gouging, marmosets produce relatively large jaw gapes, but do not necessarily produce relatively large bite forces at the anterior teeth. We compared the fiber architecture of the masseter muscle in tree-gouging Callithrix jacchus (n = 10) to nongouging Saguinus oedipus (n = 8) to determine whether the marmoset masseter facilitates producing these large gapes during tree gouging. We predict that the marmoset masseter has relatively longer fibers and, hence, greater potential muscle excursion (i.e., a greater range of motion through increased muscle stretch). Conversely, because of the expected trade-off between excursion and force production in muscle architecture, we predict that the cotton-top tamarin masseter has more pinnate fibers and increased physiological cross-sectional area (PCSA) as compared to common marmosets. Likewise, the S. oedipus masseter is predicted to have a greater proportion of tendon relative to muscle fiber as compared to the common marmoset masseter. Common marmosets have absolutely and relatively longer masseter fibers than cotton-top tamarins. Given that fiber length is directly proportional to muscle excursion and by extension contraction velocity, this result suggests that marmosets have masseters designed for relatively greater stretching and, hence, larger gapes. Conversely, the cotton-top tamarin masseter has a greater angle of pinnation (but not significantly so), larger PCSA, and higher proportion of tendon. The significantly larger PCSA in the tamarin masseter suggests that their masseter has relatively greater force production capabilities as compared to marmosets. Collectively, these results suggest that the fiber architecture of the common marmoset masseter is part of a suite of features of the masticatory apparatus that facilitates the production of relatively large gapes during tree gouging. J. Morphol. 261:276,285, 2004. © 2004 Wiley-Liss, Inc. [source]


Influence of Reactice Processing on the Properties of PP/Glass Fiber Composites Compatibilized with Silane

MACROMOLECULAR MATERIALS & ENGINEERING, Issue 4 2006
Afonso H. O. Felix
Abstract Summary: Composites of PP reinforced with 20 wt.-% of short glass fibers were prepared by extrusion using VTES as a coupling agent. The addition of VTES was performed via in-situ functionalization of PP and by a two-step process in which PP was functionalized before the composite preparation. The obtained samples were characterized using rheometry, mechanical tests and microscopy. Both processes allowed the fiber/matrix interaction to increase. It was found that the VTES content affected the viscosity of the system by means of three different mechanisms: reduction of , -scission reactions, decrease of fiber sliding and plasticizing effect on the matrix. Whereas the first two mechanisms increased the viscosity of the final composite after unreacted VTES removal, the third one reduced the viscosity during the process and contributed to fiber-length preservation. The effects of VTES and peroxide contents on the Young's modulus were closely related to their effects on the final fiber length, indicating the effectiveness of using VTES as a coupling agent. Comparison between in-situ functionalization and the two-step process with prefunctionalization showed that in-situ functionalization led to a lower degree of chain breakage, even when it was performed in the presence of peroxide. Scanning electron micrographs of PP/glass fiber composite prepared without coupling agent. [source]


What do we learn from motor unit action potentials in surface electromyography?

MUSCLE AND NERVE, Issue S11 2002
Karin Roeleveld PhD
Abstract This article gives an overview of what multichannel surface electromyography can teach us about a motor unit. Background information is given about the generation of surface electromyography in general and surface motor unit potentials in particular. Furthermore, we describe how surface motor unit potentials are related to several motor unit characteristics, such as size, location, neuromuscular junction position, fiber length, fiber type, and metabolic fiber properties. In addition, we show how the spatial characteristics of multichannel surface electromyography can be used to obtain single-surface motor unit potentials. The possibilities, challenges, and problems are discussed. Finally, several examples of surface motor unit potential analyses are given. © 2002 Wiley Periodicals, Inc. Muscle Nerve Supplement 11: S92,S97, 2002 [source]


Random discontinuous carbon fiber preforms: Experimental permeability characterization and local modeling

POLYMER COMPOSITES, Issue 4 2010
A. Endruweit
Injection experiments indicate that for random discontinuous carbon fiber preforms, increasingly uneven flow fronts develop with increasing fiber bundle length and filament count. While at high propensity for fiber bundle splitting, the preform permeability increases continuously with increasing fiber length, no trend can be identified at low propensity. No clear influence of the virgin bundle filament count on the preform permeability was observed. Types of sizing used on the fibers and bundle cross-sectional shapes may vary and affect the intrinsic filamentization behavior, thus dominating the preform permeability. In a model for local preform permeability, interbundle voids, distributed randomly across the preform thickness, are approximated via a regular void structure. Simulated filling patterns are qualitatively similar to those observed experimentally, showing more pronounced features than those derived from a model based on local through-thickness homogenization of the filament distribution. A model based on an alternating arrangement of fiber bundles and voids allows prediction of global preform permeability values from series of injection simulations, showing quantitatively better agreement with corresponding experimental results than the homogenization model. For global permeability, agreement between simulated and experimental mean values improves with increasing fiber volume fraction, whereas calculated coefficients of variation show no strong dependence on the fiber volume fraction. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers [source]


Mechanical properties of injection molded long fiber polypropylene composites, Part 1: Tensile and flexural properties

POLYMER COMPOSITES, Issue 2 2007
K. Senthil Kumar
Innovative polymers and composites are broadening the range of applications and commercial production of thermoplastics. Long fiber-reinforced thermoplastics have received much attention due to their processability by conventional technologies. This study describes the development of long fiber reinforced polypropylene (LFPP) composites and the effect of fiber length and compatibilizer content on their mechanical properties. LFPP pellets of different sizes were prepared by extrusion process using a specially designed radial impregnation die and these pellets were injection molded to develop LFPP composites. Maleic-anhydride grafted polypropylene (MA- g -PP) was chosen as a compatibilizer and its content was optimized by determining the interfacial properties through fiber pullout test. Critical fiber length was calculated using interfacial shear strength. Fiber length distributions were analyzed using profile projector and image analyzer software system. Fiber aspect ratio of more than 100 was achieved after injection molding. The results of the tensile and flexural properties of injection molded long glass fiber reinforced polypropylene with a glass fiber volume fraction of 0.18 are presented. It was found that the differences in pellet sizes improve the mechanical properties by 3,8%. Efforts are made to theoretically predict the tensile strength and modulus using the Kelly-Tyson and Halpin-Tsai model, respectively. POLYM. COMPOS., 28:259,266, 2007. © 2007 Society of Plastic Engineers [source]


Fiber orientation control of short-fiber reinforced thermoplastics by ram extrusion

POLYMER COMPOSITES, Issue 5 2003
Yukio Sanomura
In this study we examine the fiber orientation distribution, fiber length and Young's modulus of extruded short-fiber reinforced thermoplastics such as polypropylene. Axial orientation distributions are presented to illustrate the influence of extrusion ratio on the orientation state of the fibrous phase. Fibers are markedly aligned parallel to the extrusion direction with increasing extrusion ratio. The orientation state of extruded fiber-reinforced thermoplastics (FRTP) is almost uniform throughout the section. The control of fiber orientation can be easily achieved by means of ram extrusion. Experimental results are also presented for Young's modulus of extruded FRTP in the extrusion direction. Young's modulus follows a linear trend with increasing extrusion ratio because the degree of the molecular orientation and the fiber orientation increases. The model proposed by Cox, and Fukuda and Kawada describes the effect of fiber length and orientation on Young's modulus. The value of the orientation coefficient is calculated by assuming a rectangular orientation distribution and calculating the fiber distribution limit angle given by orientation parameters. By comparing the predicted Young's modulus with experimental results, the validity of the model is elucidated. The mean fiber length linearly decreases with increasing extrusion ratio because of fiber breakage due to plastic deformation. There is a small effect on Young's modulus due to fiber breakage by ram extrusion. [source]


Effects of conductive fibers and processing conditions on the electromagnetic shielding effectiveness of injection molded composites

POLYMER COMPOSITES, Issue 6 2002
S. Y. Yang
This paper investigates the electromagnetic interference shielding effectiveness (EMI SE) of injection molded ABS disks filled with stainless steel fibers (SSF) and nickel-coated graphite fibers (NGF). The effects of fiber type, fiber length and weight percentage on SE were studied. Optical microscope (OM) and scanning electron microscopy (SEM) observations of the fiber distribution and dispersion were used to aid interpretation of the deviation on SE. The effects of processing conditions such as ring gate angles and injection speed on SE and fiber dispersions were also investigated. It is found that the SE of SSF filled disks is better than that of NGF with the same fiber length and weight percentage. The SEM shows that the SSF with severe twists connect with each other to form a three-dimensional network. Nevertheless, the NGF break into straight fragments, which make it difficult to form networks. With the same type of fiber (SSF), the critical concentration of 6mm was similar to that of 4mm. But the SE of 6mm is a little higher than that of 4mm. Minor improvements of SE values were obtained with expanded ring gate angles. Gate design and injection speed both change filling patterns. [source]


The functional correlates of jaw-muscle fiber architecture in tree-gouging and nongouging callitrichid monkeys

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 3 2009
Andrea B. Taylor
Abstract Common (Callithrix jacchus) and pygmy (Cebuella pygmaea) marmosets and cotton-top tamarins (Saguinus oedipus) share broadly similar diets of fruits, insects, and tree exudates. Marmosets, however, differ from tamarins in actively gouging trees with their anterior dentition to elicit tree exudates flow. Tree gouging in common marmosets involves the generation of relatively wide jaw gapes, but not necessarily relatively large bite forces. We compared fiber architecture of the masseter and temporalis muscles in C. jacchus (N = 18), C. pygmaea (N = 5), and S. oedipus (N = 13). We tested the hypothesis that tree-gouging marmosets would exhibit relatively longer fibers and other architectural variables that facilitate muscle stretch. As an architectural trade-off between maximizing muscle excursion/contraction velocity and muscle force, we also tested the hypothesis that marmosets would exhibit relatively less pinnate fibers, smaller physiologic cross-sectional areas (PCSA), and lower priority indices (I) for force. As predicted, marmosets display relatively longer-fibered muscles, a higher ratio of fiber length to muscle mass, and a relatively greater potential excursion of the distal tendon attachments, all of which favor muscle stretch. Marmosets further display relatively smaller PCSAs and other features that reflect a reduced capacity for force generation. The longer fibers and attendant higher contraction velocities likely facilitate the production of relatively wide jaw gapes and the capacity to generate more power from their jaw muscles during gouging. The observed functional trade-off between muscle excursion/contraction velocity and muscle force suggests that primate jaw-muscle architecture reflects evolutionary changes related to jaw movements as one of a number of functional demands imposed on the masticatory apparatus. Am J Phys Anthropol, 2009. © 2009 Wiley-Liss, Inc. [source]


Demyelination Induces the Decline of the Myelinated Fiber Length in Aged Rat White Matter

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 4 2009
Chen Li
Abstract To determine the exact reason for the age-related decline of the myelinated fiber length in white matter, we performed this study. In middle-aged rats, there was age-related loss of the unmyelinated fibers with large diameters. The demyelination of the myelinated fibers with small diameters in middle-aged rat white matter might make the age-related decrease of the unmyelinated fibers with small diameters in the white matter unnoticeable. However, in old-aged female rats, the unmyelinated fibers with large and small diameters significantly degenerated together and that the unmyelinated fibers formed from the demyelination of the myelinated fibers could not replenish the age-related loss of the unmyelinated fibers in the white matter. In conclusion, this study suggested that demyelination of myelinated fibers with small diameters in aged white matter might be the key mechanism of the significant decline of the myelinated fiber length in aged white matter. Anat Rec, 292:528,535, 2009. © 2009 Wiley-Liss, Inc. [source]


Exacerbated loss of cell survival, neuropeptide Y-immunoreactive (IR) cells, and serotonin-IR fiber lengths in the dorsal hippocampus of the aged flinders sensitive line "depressed" rat: Implications for the pathophysiology of depression?

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 6 2006
H. Husum
Abstract Impairment of hippocampal neurogenesis has been proposed to provide a cellular basis for the development of major depression. Studies have shown that serotonin (5-HT) and neuropeptide Y (NPY) may be involved in stimulating cell proliferation in the dentate gyrus. The Flinders-sensitive line (FSL) rat represents a genetic model of depression with characterized 5-HT and NPY abnormalities in the hippocampus. Consequently, it could be hypothesized that hippocampal neurogenesis in the FSL rat would be impaired. The present study examined the relationship among 1) number of BrdU-immunoreactive (IR) cells, 2) NPY-IR cells in the dentate gyrus, and 3) length of 5-HT-IR fibers in the dorsal hippocampus, as well as volume and number of 5-HT-IR cells in the dorsal raphé nucleus, in adult and aged FSL rats and control Flinders-resistant line (FRL) rats. Surprisingly, adult FSL rats had significantly more BrdU-IR and NPY-IR cells compared with adult FRL rats. However, aging caused an exacerbated loss of these cell types in the FSL strain compared with FRL. The aged FSL rats also had shortened 5-HT-IR fibers in the dorsal hippocampus, indicative of an impaired 5-HT innervation of this area, compared with FRL. These results suggest that, for "depressed" FSL rats, compared with FRL rats, aging is associated with an excacerbated loss of newly formed cells in addition to NPY-IR cells and 5-HT-IR dendrites in the hippocampus. These observations may be of relevance to the depression-like behavior of the FSL rat and, by inference, to the pathophysiology of depression. © 2006 Wiley-Liss, Inc. [source]


Performance of hollow-fiber flow field-flow fractionation in protein separation

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 16 2005
Ilyong Park
Abstract Since hollow-fiber flow field-flow fractionation (HF FlFFF) utilizes a cylindrical channel made of a hollow-fiber membrane, which is inexpensive and simple in channel assembly and thus disposable, interests are increasing as a potential separation device in cells, proteins, and macromolecules. In this study, performance of HF FlFFF of proteins is described by examining the influence of flow rate conditions and length of fiber (polyacrylonitrile or PAN in this work) on sample recovery as well as experimental plate heights. The interfiber reproducibility in terms of separation time and recovery was also studied. Experiments showed that sample recovery was consistent regardless of the length of fiber when the effective field strength (equivalent to the mean flow velocity at the fiber wall) and the channel void time were adjusted to be equivalent for channels of various fiber lengths. This supported that the majority of sample loss in HF FlFFF separation of apoferritin and their aggregates may occur before the migration process. It is finally demonstrated that HF FlFFF can be applied for characterizing the reduction in Stokes' size of low density lipoproteins from blood plasma samples obtained from patients having coronary artery disease and from healthy donors. [source]


Functional Correlates of Fiber Architecture of the Lateral Caudal Musculature in Prehensile and Nonprehensile Tails of the Platyrrhini (Primates) and Procyonidae (Carnivora)

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 6 2009
Jason M. Organ
Abstract Prehensile-tailed platyrrhines (atelines and Cebus) and procyonids (Potos) display bony tail features that have been functionally and adaptively linked to their prehensile behaviors, particularly the need to resist relatively greater bending and torsional stresses associated with supporting their body weight during suspensory postures. We compared fiber architecture of the mm. intertransversarii caudae (ITC), the prime tail lateral flexors/rotators, in 40 individuals distributed across 8 platyrrhine and 2 procyonid genera, divided into one of two groups: prehensile or nonprehensile. We tested the hypothesis that prehensile-tailed taxa exhibit relatively greater physiologic cross-sectional areas (PCSAs) to maintain tail suspensory postures for extended periods. As an architectural trade-off of maximizing force, we also predicted prehensile-tailed taxa would exhibit relatively shorter, more pinnate fibers, and a lower mass to tetanic tension ratio (Mass/PO). Prehensile-tailed taxa have relatively higher PCSAs in all tail regions, indicating their capacity to generate relatively greater maximum muscle forces compared to nonprehensile-tailed taxa. Contrary to our predictions, there are no group differences in pinnation angles, fiber lengths or M/PO ratios. Therefore, the relatively greater prehensile PCSAs are driven largely by relative increase in muscle mass. These findings suggest that relatively greater ITC PCSAs can be functionally linked to the need for prehensile-tailed taxa to suspend and support their body weight during arboreal behaviors. Moreover, maximizing ITC force production may not come at the expense of muscle excursion/contraction velocity. One advantage of this architectural configuration is it facilitates suspension of the body while simultaneously maximizing tail contact with the substrate. Anat Rec, 292:827,841, 2009. © 2009 Wiley-Liss, Inc. [source]