Home About us Contact | |||
Feeding Rats (feeding + rat)
Selected AbstractsCovariance of tricarboxylate carrier activity and lipogenesis in liver of polyunsaturated fatty acid (n-6) fed ratsFEBS JOURNAL, Issue 22 2001Vincenzo Zara The mitochondrial tricarboxylate (citrate) carrier plays an important role in hepatic intermediary metabolism because, among other functions, it supplies the cytosol with acetyl units for fatty-acid synthesis. In this study, the effect of polyunsaturated fatty acids (PUFA, n-6) on the function of this mitochondrial transporter and on lipogenic enzyme activities was investigated by feeding rats for 4 weeks with a 15%-fat diet composed of high linoleic safflower oil. Citrate transport was strongly reduced in liver mitochondria isolated from PUFA-treated rats. A reduced transport activity was also observed when solubilized mitochondrial citrate carrier from PUFA-treated rats was reconstituted into liposomes. In the same animals, a decrease of cytosolic lipogenic enzyme activities was observed. These results indicate a coordinated modulation of citrate carrier and of lipogenic enzyme activities by PUFA feeding. Kinetic analysis of the carrier activity showed that only Vmax decreased, whereas Km was almost virtually unaffected. The PUFA-mediated effect is most likely due to the reduced mRNA level and lower content of the citrate carrier protein observed in the safflower oil-fed rats. [source] Epigenetic reprogramming of liver cells in tamoxifen-induced rat hepatocarcinogenesisMOLECULAR CARCINOGENESIS, Issue 3 2007Volodymyr P. Tryndyak Abstract Tamoxifen, a nonsteroidal anti-estrogen, is a potent genotoxic hepatocarcinogen in rats, with both tumor initiating and promoting properties. Recently it has been demonstrated that genotoxic carcinogens, in addition to exerting genotoxic effects, often cause epigenetic alterations and these induced epigenetic changes may play important mechanistic role in carcinogenesis. In the present study, we investigated the role of tamoxifen-induced epigenetic changes in hepatocarcinogenic process. The results of the study showed that exposure of female F344 rats to tamoxifen resulted in progressive loss of CpG methylation in regulatory sequences of long interspersed nucleotide elements (LINE-1) and prominent increase in expression of LINE-1 elements and c- myc proto-oncogene. The accumulation of tamoxifen-induced DNA lesions was accompanied by the decreased level of Rad51, Ku70, and DNA polymerase , (Pol,) proteins that play a crucial role in maintenance of genomic stability. Furthermore, feeding rats with tamoxifen-containing diet led to increased regenerative cell proliferation, as indicated by the increased level of Ki-67 and proliferating cell nuclear antigen (PCNA) proteins. These data indicate that exposure of animals to genotoxic hepatocarcinogen tamoxifen led to early phenotypical alterations in livers characterized by emergence of epigenetically reprogrammed cells with a specific cancer-related epigenetic phenotype prior to tumor formation. © 2006 Wiley-Liss, Inc. [source] Oxidative stress due to anesthesia and surgical trauma: Importance of early enteral nutritionMOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue 6 2009Katerina Kotzampassi Abstract Anesthesia and surgical trauma are considered major oxidative and nitrosative stress effectors resulting in the development of SIRS. In this study we evaluated the usefulness of early enteral nutrition after surgical trauma. Sixty male Wistar rats were subjected to midline laparotomy and feeding-gastrostomy. Twenty of these rats served as controls after recovering from the operation stress. The remaining rats received, through gastrostomy, enteral nutrition or placebo-feeding for 24 h. Oxidative stress markers and CC chemokine production were evaluated in rat serum and liver tissue. The operation itself was found to increase nitric oxide (NO) and malondialdehyde (MDA) and to decrease superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), as well as liver tissue energy charge (EC) in relation to controls. The rats receiving enteral feeding exhibited statistically significantly lower levels of NO and MDA, and higher levels of SOD, GSH-Px, and liver EC, in relation to placebo feeding rats. The operation significantly increased the chemokines monocyte chemoattractant protein (MCP)-1 and regulated upon activation, normal T-cell expressed, and secreted (RANTES) in rat serum, while enteral nutrition caused a further significant increase in chemokine levels in serum. mRNA chemokine expression in liver was increased in a similar pattern. These findings indicate that early enteral feeding might play an important role after surgery ameliorating oxidative stress, affecting positively the hepatic EC and regulating, via chemokine production, cell trafficking, and healing process. [source] Metallothionein as a biomarker for mercury in tissues of rat fed orally with cinnabarAPPLIED ORGANOMETALLIC CHEMISTRY, Issue 6 2004Zhi-Yong Huang Abstract Cinnabar, as one of the most widely used mineral drugs in traditional Chinese medicines, has been proven to have prominent curative effects in clinical use for more than 2000 years. But the safety and toxicity of the drug has been under constant debate in clinic usage. Metallothionein (MT) contains about 30% of cysteine in the molecule, and plays an important detoxification role against heavy metals. In this study, it was used as a biomarker to assess mercurial accumulation in rats fed orally with cinnabar. After feeding rats with cinnabar by gastric gavage at different dosages and at different times, the distribution of heavy metals (including mercury, copper and zinc) and MT was investigated among rat tissues, including liver, kidney, heart, brain, testis and blood. Metals and MT determinations were carried out using inductively coupled plasma mass spectrometry (ICP-MS) and a modified mercury saturation assay technique respectively. The results indicated that mercury was easily accumulated in the tissues of rats exposed to cinnabar, especially in kidney. For example: at a feeding dosage of 5 g kg,1 (bw) for 4 weeks, the mercury concentrations in kidney were 13, 8.7, 21.6 and 26 times those in liver, testis, brain and heart respectively; and at 2.5 g kg,1 (bw) for 2 weeks, the mercury concentrations in kidney were 21, 2.1, 3 and 21 times those in liver, testis, brain and heart respectively. In addition, mercury in kidney and liver of all cinnabar groups was significantly higher than that of the control group (P < 0.01). A high positive correlation observed between MT concentrations and mercury levels in both liver and kidney (R2 = 0.9299, P < 0.02 for liver; R2 = 0.9923, P < 0.0008 for kidney) indicated that MT could be used as a biomarker for mercury in tissues. Copyright © 2004 John Wiley & Sons, Ltd. [source] Mechanisms involved in the chemoprevention of flavonoidsBIOFACTORS, Issue 1-4 2000Marie-HÉLÉNe Siess Flavonoids, widespread in edible plants, have been studied extensively for their anticarcinogenic properties. However, only few studies have been done with these constituents being administered by the dietary route. In our research, the effects of feeding rats with flavone, flavanone, tangeretin, and quercetin were investigated on two steps of aflatoxin B1 (AFB1)-induced hepatocarcinogenesis (initiation and promotion). Nonpolar flavonoids such as flavone, flavanone and tangeretin administered through the initiation period, decreased the number of ,-glutamyl transpeptidase-preneoplastic foci. In the same conditions of administration, quercetin, a polyhydroxylated flavonoid, showed no protective effect. Moreover, feeding rats with flavanone during the phenobarbital-induced promotion step significantly reduced the areas of placental glutathione S-transferase preneoplastic foci. Quercetin, flavone, and tangeretin, administered in the same conditions, caused no significant effect. Therefore flavanone act as an anti-initiator as well as an anti-promotor. Several mechanisms were involved in the anti-initiating effects of flavone, flavanone, and tangeretin: enhancement of enzymes involved in the detoxication of AFB1 (glutathione S-transferase, UDP-glucuronyl transferase), increase of the formation of AFB1 -glutathione conjugates and inhibition of the binding of AFB1 to DNA. Although the relevance of these data to the human situation remains to be demonstrated, they confirm that several flavonoids administered by the dietary route possess promising chemoprotective effects. [source] 2,3,4,,5-TETRAHYDROXYSTILBENE-2- O -,- d -GLUCOSIDE SUPPRESSES MATRIX METALLOPROTEINASE EXPRESSION AND INFLAMMATION IN ATHEROSCLEROTIC RATSCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 3 2008Wei Zhang SUMMARY 1In coronary artery disease, the typical atheromatous plaque consists of a lipid core containing various inflammatory cells and a fibrous cap composed mostly of extracellular matrix. Both matrix metalloproteinases (MMPs) and inflammation are involved in the initiation of atherosclerotic plaques and plaque instability. 22,3,4¢,5-Tetrahydroxystilbene-2- O -b- d -glucoside (TSG) reduces the blood lipid content and prevents the atherosclerotic process, but the mechanism of action of TSG is unclear. The purpose of the present study was to test whether TSG can suppress MMP activation and inflammation in atherosclerotic rats. 3Sixty male Sprague-Dawley rats were randomly divided into six groups. Atherosclerosis was induced by feeding rats a hyperlipidaemic diet; TSG (120, 60 or 30 mg/kg per day) was administered by oral gavage. After 12 weeks of treatment, rats were killed (ethyl carbamate 1200 mg/kg) and serum lipids, C-reactive protein (CRP), interleukin (IL)-6 and tumour necrosis factor (TNF)-a were measured. Haematoxylin,eosin (H&E) staining was used to examine histopathological changes in the aorta. The mRNA and protein expression of MMPs were assayed by reverse transcription,polymerase chain reaction, immunohistochemistry and western blotting. Simvastatin (2 mg/kg per day) was administered as a positive control, whereas the vehicle (0.9% NaCl) group served as the untreated control. 4In the present study, TSG significantly and dose-dependently attenuated the hyperlipidaemic diet-induced alterations in serum lipid profile and increases in CRP, IL-6 and TNF-a levels. In addition, TSG normalized the structure of the aortic wall and suppressed the expression of MMP-2 and MMP-9 at both the mRNA and protein level in the rat aortic wall. 5In summary, TSG suppresses the expression of MMP-2 and MMP-9 and inhibits inflammation in the diet-induced atherosclerotic rats. [source] |