Feeding Grounds (feeding + ground)

Distribution by Scientific Domains


Selected Abstracts


Size-related shifts in dietary composition of Centropomus parallelus (Perciformes: Centropomidae) in an estuarine ecosystem of the southeastern coast of Brazil

JOURNAL OF APPLIED ICHTHYOLOGY, Issue 3 2009
R. Feltrin Contente
Summary Size-related and seasonal evaluation of the dietary composition of fat snook (Centropomus parallelus Poey 1860) in the upper sector of an estuary of the southeastern coast of Brazil were carried out based on stomach analyses of specimens ranging from 40 to 170 mm standard length. Results reveal that C. parallelus is a carnivorous species feeding mainly on benthic crustaceans. Relatively high stomach replenishment suggests that this environment is an important feeding ground for fat snook juveniles. Multivariate analyses indicated that predator size effect is significantly more important than seasonal variation in determining dietary composition. Predator length was associated with increased consumption of palaemonid shrimps (Macrobrachium spp.) and grapsid crabs, and decreased foraging on tanaids (Kalliapseudes schubarti), thus showing a preference shift from smaller to larger prey. Predator length was also positively associated with an increase in the stomach repletion index. Additionally, allometric growth of both gape and head were consistently correlated with this ontogenetic dietary transition, suggesting that such changes might be related to an individual's ability to capture and consume larger, more elusive prey. The digestive tube is short and grows isometrically, which is in accordance with the carnivorous habit of this estuarine fish and its maintenance through ontogeny. [source]


Do competitive intraguild interactions affect space and habitat use by small carnivores in a forested landscape?

ECOGRAPHY, Issue 4 2006
Caroline St-Pierre
Complex interactions such as interference competition and predation, including intraguild predation, are now recognized as important components in animal community structure. At the lower end of a guild, weasels may be highly affected by other guild members due to small body size in relation to other predators. In 2000 and 2001, we radio-collared 24 ermines Mustela erminea and 25 long-tailed weasels M. frenata in 2 areas that differed in abundance of guild members. We tested the hypothesis that when faced with an increased density of other guild members, weasels would modify space and habitat use to reduce the risk of predation associated with encounters involving guild members. We predicted that weasels would increase use of specific habitats (such as refuges) to reduce encounter rates in the presence of a greater number of guild members. Because M. erminea is smaller than M. frenata and thus better able to take advantage of small rodent burrows as refuges from predators and as feeding grounds, we also predicted that M. frenata would show a stronger response to a higher abundance of guild members than M. erminea. Results were consistent with our predictions. Faced with an increased abundance of guild members, M. frenata showed increased habitat selectivity and reduced activity levels, which resulted in increased daily travel distances and increased home ranges. Mustela erminea responded to an increased abundance of guild members through reduced use of preferred habitat which M. frenata already occupied. The contrasting pattern of habitat selection observed between the 2 mustelid species suggested cascading effects, whereby large-predator pressure on M. frenata relaxed pressure of M. frenata on M. erminea. Our results draw attention to the likelihood that competitive intraguild interactions play a facilitating role in M. erminea,M. frenata coexistence. [source]


Feeding ecology of fishes associated with Egeria spp. patches in a tropical reservoir, Brazil

ECOLOGY OF FRESHWATER FISH, Issue 1 2006
F. M. Pelicice
Abstract ,, This research characterised feeding ecology of fishes associated with patches of Egeria najas and Egeria densa, two submerged macrophytes, in Rosana Reservoir, Upper Paraná River basin, Brazil. Fishes were sampled using a 1 m2 throw trap in patches of different macrophyte biomass and in three diel periods during a wet season. Fish diet (10 species) was primarily composed of autochthonous items (zooplankton, algae and aquatic insect larvae). Almost all intra-specific diet patterns had moderate to low levels of diet similarity, indicating a high variability in diet. Some species showed no diel patterns in feeding activity, whereas others were primarily diurnal or nocturnal. No differences in feeding activity were observed among habitats of medium and high macrophyte biomasses, and species tended to feed on the same items among these habitats. The most abundant fish species demonstrated low inter-specific diet overlap and appear not to compete for food resources. We suggest that Egeria patches are feeding grounds and shelter for small-sized fish species. Resumen 1. Esta investigación caracterizó la ecología trófica de las especies de peces asociadas a manchas de Egeria najas e E. densa, dos macrofitas sub-aquaticas, en la represa de Rosana (alto Río Paraná, Brasil). Los peces fueron colectados con un throw trap de 1 m2 en manchas con distintas biomasas de macrófitas y en tres períodos del día, durante la estación lluviosa. 2. La dieta de 10 especies estuvo compuesta principalmente de componentes autóctonos (zooplancton, algas y larva de insectos acuáticos). Casi todas las especies presentaron patrones de dieta intra-específica con similitudes moderadas o bajas (elevada variabilidad). Algunas especies no mostraron ningún patrón de actividad alimenticia durante el día mientras que otras fueron principalmente diurnas o nocturnas. No se observó ninguna diferencia de actividad alimenticia entre los habitats de media y alta biomasa de macrófitas, y las especies tendieron a alimentarse de los mismos componentes entre estos habitats. 3. Las especies de peces más abundantes mostraron un solapamiento alimenticio bajo y parecen no competir por recursos alimenticios. Sugerimos que las manchas de Egeria funcionan como lugar de alimentación y abrigo para los peces de pequeño tamaño. [source]


ORIGINAL ARTICLE: Propensity of marine reserves to reduce the evolutionary effects of fishing in a migratory species

EVOLUTIONARY APPLICATIONS (ELECTRONIC), Issue 3 2009
Erin S. Dunlop
Abstract Evolutionary effects of fishing can have unwanted consequences diminishing a fishery's value and sustainability. Reserves, or no-take areas, have been proposed as a management tool for reducing fisheries-induced selection, but their effectiveness for migratory species has remained unexplored. Here we develop an eco-genetic model to predict the effects of marine reserves on fisheries-induced evolution under migration. To represent a stock that undergoes an annual migration between feeding and spawning grounds, we draw model parameters from Atlantic cod (Gadus morhua) in the northern part of its range. Our analysis leads to the following conclusions: (i) a reserve in a stock's feeding grounds, protecting immature and mature fish alike, reduces fisheries-induced evolution, even though protected and unprotected population components mix on the spawning grounds; (ii) in contrast, a reserve in a stock's spawning grounds, protecting only mature fish, has little mitigating effects on fisheries-induced evolution and can sometimes even exacerbate its magnitude; (iii) evolutionary changes that are already underway may be difficult to reverse with a reserve; (iv) directly after a reserve is created or enlarged, most reserve scenarios result in yield losses; and (v) timescale is very important: short-term yield losses immediately after a reserve's creation can give way to long-term gains. [source]


Spatial distribution of the Japanese common squid, Todarodes pacificus, during its northward migration in the western North Pacific Ocean

FISHERIES OCEANOGRAPHY, Issue 2 2006
ATSUSHI KAWABATA
Abstract The spatial distribution of Todarodes pacificus in and near the Kuroshio/Oyashio Transition Zone during its northward migration was examined by comparative surveys using two types of mid-water trawl net and supplementary squid jigging from June to July 2000. The vertical and horizontal distribution patterns varied for different body sizes in relation to the oceanographic structure. Todarodes pacificus of 1,20 cm dorsal mantle length (ML) were widely distributed from the coastal waters of Japan to near 162°E longitude, probably due to transport by the Kuroshio Extension (KE). Todarodes pacificus smaller than 10 cm ML were mainly distributed in temperate surface layers at sea surface temperatures (SSTs) >15°C near the KE meander probably because of their poor tolerance to lower temperatures and limited swimming ability. Squid of 10,15 cm ML were distributed in the offshore waters of 10,15°C SST and in the coastal waters of northern Honshu, and underwent diel vertical migrations between the sea surface at night and deeper layers during the daytime. Squid larger than 15 cm ML were distributed in the coastal feeding grounds of northern Honshu and Hokkaido until they began their southward spawning migration. They also underwent diel vertical migrations, but remained deeper at night than the squid of 10,15 cm ML; this migration pattern closely matched that of their main prey such as euphausiids. We concluded that as T. pacificus grow, they shift their distribution range from the temperate surface layer around the KE toward the colder deeper layers, above 5°C, in the Oyashio and coastal areas. [source]


A spatial model of population dynamics of the early life stages of Japanese sardine, Sardinops melanostictus, off the Pacific coast of Japan

FISHERIES OCEANOGRAPHY, Issue 2 2003
Maki Suda
Abstract We constructed a numerical model reproducing the transport, survival and individual growth of the early life stages of Japanese sardine, Sardinops melanostictus, off the Pacific coast of Japan during 1978,93. The causes of early life stage mortality, including the influence of the effects of the spatial relationship between the spawning grounds and the Kuroshio on the mortality rate, were investigated. Survival and transport from egg stage to 60 days after spawning were modelled daily in a 1 × 1 degree mesh cell and individual growth in the period was modelled in each region (Kuroshio, Inshore, Offshore and Transition regions). Individual growth and survival from 60 to 180 days after spawning were modelled daily in the Transition region. Environmental data were taken from outside the model system. Our simulation indicates that survival variability in the larval stage (5,25 mm in standard length) is the key factor in determining the year-class strength. The simulation revealed that strong year classes occurred with good survival in the spawning ground and whilst entrained in the Kuroshio current being transported to the main feeding grounds in the Transition region. The simulation also indicated that survival rates in 1988,93 were low in the Inshore, Kuroshio and Offshore regions, which depressed the year-class strength during that period. [source]


Palaeoecology and depositional environments of the Tendaguru Beds (Late Jurassic to Early Cretaceous, Tanzania)

FOSSIL RECORD-MITTEILUNGEN AUS DEM MUSEUM FUER NATURKUNDE, Issue 1 2002
Martin Aberhan
Abstract The Late Jurassic to Early Cretaceous Tendaguru Beds (Tanzania, East Africa) have been well known for nearly a century for their diverse dinosaur assemblages. Here, we present sedimentological and palaeontological data collected by the German-Tanzanian Tendaguru Expedition 2000 in an attempt to reconstruct the palaeo-ecosystems of the Tendaguru Beds at their type locality. Our reconstructions are based on sedimentological data and on a palaeoecological analysis of macroinvertebrates, microvertebrates, plant fossils and microfossils (ostracods, foraminifera, charophytes, palynomorphs). In addition, we included data from previous expeditions, particularly those on the dinosaur assemblages. The environmental model of the Tendaguru Beds presented herein comprises three broad palaeoenvironmental units in a marginal marine setting: (1) Lagoon-like, shallow marine environments above fair weather wave base and with evidence of tides and storms. These formed behind barriers such as ooid bar and siliciclastic sand bar complexes and were generally subject to minor salinity fluctuations. (2) Extended tidal flats and low-relief coastal plains. These include low-energy, brackish coastal lakes and ponds as well as pools and small fluvial channels of coastal plains in which the large dinosaurs were buried. Since these environments apparently were, at best, poorly vegetated, the main feeding grounds of giant sauropods must have been elsewhere. Presumably, tidal flats and coastal plains were visited by dinosaurs primarily during periods of drought. (3) Vegetated hinterland. Vegetation of this environment can only be inferred indirectly from plant material transported into the other depositional environments. Vegetation was dominated by a diverse conifer flora, which apparently formed part of the food source of large herbivorous sauropods. Evidence from various sources suggests a subtropical to tropical palaeoclimate, characterised by seasonal rainfall alternating with a pronounced dry season during the Late Jurassic. In Early Cretaceous times, sedimentological and palaeontological proxies suggest a climatic shift towards more humid conditions. Die Tendaguru-Schichten von Tansania in Ostafrika (Oberjura bis Unterkreide) sind als Lagerstätte oberjurassischer Dinosaurier seit nahezu einem Jahrhundert weltweit bekannt. Anhand von sedimentologischen und paläontologischen Daten, die während der Deutsch-Tansanischen Tendaguru Expedition 2000 im Typus-Gebiet der Tendaguru-Schichten gewonnen wurden, werden Paläo-Ökosysteme rekonstruiert. Grundlage der Rekonstruktionen sind die Auswertung sedimentologischer Daten sowie die paläo-ökologische Analyse von Makroinvertebraten, Mikrovertebraten, pflanzlichen Fossilien und Mikrofossilien (Ostrakoden, Foraminiferen, Charophyten, Palynomorphen). Darüber hinaus werden Informationen über Dinosaurier berücksichtigt, die bei früheren Expeditionen gewonnen wurden. Das hier vorgestellte Ablagerungsmodell der Tendaguru-Schichten umfaßt drei Teilbereiche eines randlich marinen Sedimentationsraumes, die wie folgt gekennzeichnet werden können: (1) Lagunen-artige, marine Flachwasserbereiche, die oberhalb der Schönwetter-Wellenbasis lagen und unter deutlichem Einfluß von Gezeiten und Stürmen standen. Sie waren vom offenen Meer durch Barrieren, wie Ooidbarren und siliziklastischen Sandbarrenkomplexen, getrennt und wiesen einen leicht schwankenden Salzgehalt auf. (2) Ausgedehnte Wattgebiete und flache Küstenebenen. Dort befanden sich niedrig-energetische, brackische Strandseen und Teiche sowie Tümpel und kleinere Flußrinnen, in denen die großen Dinosaurier eingebettet wurden. Da diese Lebensräume bestenfalls dürftig bewachsen waren, müssen die Nahrungsquellen und der eigentliche Lebensraum der riesigen Sauropoden anderswo gelegen haben. Vermutlich wurden die Wattgebiete und Flachküsten von Dinosauriern vorrangig in den Trockenzeiten aufgesucht. (3 ) Bewachsenes Hinterland. Die Vegetation dieses Lebensraumes kann nur indirekt aus Pflanzenresten erschlossen werden, die in die anderen Ablagerungsraume transportiert wurden. Die Vegetation wurde von einer diversen Koniferenflora dominiert, die zumindest teilweise die Nahrungsgrundlage der großen, herbivoren Sauropoden bildete. Sedimentologische und paläontologische Indikatoren sprechen für ein subtropisches bis tropisches Klima wahrend der späten Jurazeit mit einem jahreszeitlichen Wechsel von Regenfällen und ausgeprägten Trockenzeiten. In der frühen Kreidezeit deutet sich ein Wechsel zu starker humiden Bedingungen an. [source]


Predicting the effects of marine climate change on the invertebrate prey of the birds of rocky shores

IBIS, Issue 2004
Michael A. Kendall
By the end of the 21st century models of climate change predict that the air temperature over most of the British Isles will increase by between 2 and 3 °C and sea-level will rise by 40,50 cm. Over that period it will become windier and mean wave height will increase, as will the frequency of storms. These changes in climate and weather will impact the intertidal zone of the UK and will cause distribution changes in many of the common invertebrate species that live there. Where these changes are severe they may well impact on patterns of distribution of ducks and wading birds. In the British Isles a number of organisms live close to their geographical limits of distribution. Some of these species might be expected to extend their range as climatic restraints are relaxed. Species currently limited by cool summers or winter cold will move northwards. In most cases the effects on the distribution of waterbirds will be small. For example, the replacement of the Northern Limpet Patella vulgata by the Southern Limpet P. depressa is unlikely to adversely affect Eurasian Oystercatchers Haematopus ostralegus. Of wider concern is the possibility that as climate warms the abundance and productivity of brown algae will decrease. This is likely to have two significant effects for waders. First, it would represent a loss of potentially rich feeding grounds for species such as Ruddy Turnstone Arenaria interpres that feed on small easily desiccated invertebrates living on or below the seaweed. Secondly, as algae die or are broken away the resulting debris is exported to sediment habitats where it considerably boosts the in situ production of bacteria at the base of the food web. An increase in sea-level will only have a major impact on the extent of rocky shore invertebrate communities where shore topography prevents the upward migration of the biota. Where a seawall limits shores, for example, biological production will be curtailed as the area available for colonization decreases. Increases in the size of waves and the frequency of storms will mimic increasing exposure and there will be a significant reduction in algal production in areas that are affected. [source]


The North Atlantic subpolar gyre and the marine migration of Atlantic salmon Salmo salar: the ,Merry-Go-Round' hypothesis

JOURNAL OF FISH BIOLOGY, Issue 3 2010
M. J. Dadswell
One model for marine migration of Atlantic salmon Salmo salar proposes that North American and southern European stocks (<62° N) move directly to feeding grounds off west Greenland, then overwinter in the Labrador Sea, whereas northern European stocks (>62° N) utilize the Norwegian Sea. An alternate model proposes that both North American and European stocks migrate in the North Atlantic Subpolar Gyre (NASpG) where S. salar enter the NASpG on their respective sides of the Atlantic, and travel counterclockwise within the NASpG until returning to natal rivers. A review of data accumulated during the last 50 years suggests a gyre model is most probable. Freshwater parr metamorphose into smolts which have morphological, physiological and behavioural adaptations of epipelagic, marine fishes. Former high-seas fisheries were seasonally sequential and moved in the direction of NASpG currents, and catches were highest along the main axis of the NASpG. Marking and discrimination studies indicate mixed continental origin feeding aggregations on both sides of the Atlantic. Marked North American smolts were captured off Norway, the Faroe Islands, east and west Greenland, and adults tagged at the Faroes were recovered in Canadian rivers. Marked European smolts were recovered off Newfoundland and Labrador, west and east Greenland, and adults tagged in the Labrador Sea were captured in European rivers. High Caesium-137 (137Cs) levels in S. salar returning to a Quebec river suggested 62·3% had fed at or east of Iceland, whereas levels in 1 sea-winter (SW) Atlantic Canada returnees indicated 24·7% had fed east of the Faroes. Lower levels of 137Cs in returning 1SW Irish fish suggest much of their growth occurred in the western Atlantic. These data suggest marine migration of S. salar follows a gyre model and is similar to other open-ocean migrations of epipelagic fishes. [source]


Investigation of wild caught whitefish, Coregonus lavaretus (L.), for infection with viral haemorrhagic septicaemia virus (VHSV) and experimental challenge of whitefish with VHSV

JOURNAL OF FISH DISEASES, Issue 7 2004
H F Skall
Abstract One hundred and forty-eight wild whitefish, Coregonus lavaretus (L.), were caught by electrofishing and sampled for virological examination in December 1999 and 2000, during migration from the brackish water feeding grounds to the freshwater spawning grounds, where the whitefish may come into contact with farmed rainbow trout. All samples were examined on cell cultures. No viruses were isolated. Three viral haemorrhagic septicaemia virus (VHSV) isolates of different origin were tested in infection trials by immersion and intraperitoneal (IP) injection, using 1.5 g farmed whitefish: an isolate from wild caught marine fish, a farmed rainbow trout isolate with a suspected marine origin and a classical freshwater isolate. The isolates were highly pathogenic by IP injection where 99,100% of the whitefish died. Using an immersion challenge the rainbow trout isolates were moderately pathogenic with approximately 20% mortality, whereas the marine isolate was virtually non-pathogenic. At the end of the experiment it was possible to isolate VHSV from survivors infected with the marine and suspected marine isolates. Because of the low infection rate in wild whitefish in Denmark, the role of whitefish in the spread of VHSV in Denmark is probably not significant. The experimental studies, however, showed that whitefish are potential carriers of VHSV as they suffer only low mortality after infection but continue to carry virus. [source]


Activity budget and diving behavior of gray whales (Eschrichtius robustus) in feeding grounds off coastal British Columbia

MARINE MAMMAL SCIENCE, Issue 3 2008
Lei Lani Stelle
Abstract Behavior and diving patterns of summer resident gray whales (Eschrichtius robustus) foraging on mysids were studied in coastal bays along the north shore of Queen Charlotte Strait, British Columbia. In this region, gray whales were found to feed primarily on planktonic prey rather than on the benthos as in their primary feeding areas further north. During the summers of 1999 and 2000, whales spent most of their time actively feeding or searching for prey (77%), whereas only 15% of their time was spent traveling and 8% socializing. The majority of the dives were short; the mean dive duration was 2.24 min with approximately three respirations per surfacing and 15 s between blows. Whales dove frequently (26.7 h,1), spending only 17% of their time at the surface with an overall blow rate of 1.14 respirations per minute. Activity states were characterized by significantly different diving and respiratory parameters; feeding whales dove more frequently, with shorter intervals between respirations, thus spending less time at the surface compared to when traveling or searching. This diving pattern differs from benthic-feeding whales and likely optimizes capture of the mobile mysid swarms in shallow waters. [source]


Positive interactions between vulnerable species in agrarian pseudo-steppes: habitat use by pin-tailed sandgrouse depends on its association with the little bustard

ANIMAL CONSERVATION, Issue 4 2010
C. A. Martín
Abstract Positive interactions between species can have important conservation implications, especially when the species associating are both vulnerable. We studied the habitat use of pin-tailed sandgrouses Pterocles alchata and their association with another vulnerable species, the little bustard Tetrax tetrax in agrarian pseudo-steppes of central Spain using radio-tracking. The occurrence of mixed-species flocks varied seasonally, being more frequent in winter (65% of pin-tailed sandgrouse flocks). In this season, pin-tailed sandgrouses preferred stubble fields and fallows. Moreover, we found that habitat selection of pin-tailed sandgrouse depended on the association with little bustards in mixed-species flocks. When in mixed-species groups, sandgrouses changed their agrarian substrate preferences, and used stubble fields significantly more often than when in sandgrouse-only flocks. We also provide evidence that pin-tailed sandgrouse benefited from the anti-predator vigilance of little bustards, allowing sandgrouse to exploit new feeding grounds (stubble fields) that would otherwise be too risky to exploit. Our results indicate a close positive association between these two species, which are both declining in Europe, and we discuss implications for their management and conservation. We also recommend taking into account inter-specific positive interactions when designing conservation strategies for threatened species. [source]


Offshore spatial segregation in giant petrels Macronectes spp.: differences between species, sexes and seasons

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue S1 2007
J. González-Solís
Abstract 1.Investigations were made to determine whether the two giant petrel species segregate by gender and species in relation to the stage of the annual cycle. The individual foraging behaviour of 14 male and 11 female northern giant petrels (Macronectes halli) and 13 male and 15 female southern giant petrels (M. giganteus) breeding at South Georgia were tracked over 1 year using geolocators (global location sensing loggers). 2.Males of both species showed a flexible foraging strategy, switching from coastal to pelagic habits, probably governed by spatio-temporal changes in carrion availability. In contrast, marine areas exploited by females were more consistent over the year and similar for the two species, with most foraging locations concentrated over the same pelagic waters. 3.This study provides support for the differences in foraging between sexes as the main mechanism reducing intraspecific competition. Although the two species are morphologically similar and can easily access each other's foraging habitat, they differ in the foraging areas exploited. Thus, interspecific competition seems mainly relaxed by spatial segregation, particularly between males in winter, probably mediated by different competitive abilities and physical tolerances to temperature and winds. Foraging southern giant petrels from South Georgia were not restricted to the areas within the line of equidistance to other colonies, but their foraging range overlapped with feeding grounds of conspecifics breeding in the Falkland Islands and the Antarctic Continent. 4.Taken together, these findings suggest that foraging selection on marine habitat heterogeneity reduces interspecific competition, whereas carrion availability reduces intersexual competition, in giant petrels. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Determinants of preferred intertidal feeding habitat for Eastern Curlew: A study at two spatial scales

AUSTRAL ECOLOGY, Issue 2 2007
PAUL G. FINN
Abstract Broadscale habitat use by Eastern Curlews (Numenius madagascariensis) in their non-breeding range in eastern Australia was assessed using low tide surveys on feeding grounds, where 60 skilled volunteers made repeated counts of the birds on intertidal flats, across 41% (9500 ha) of the intertidal habitat within Moreton Bay, Australia. We analysed 32 defined sections of intertidal flat, of roughly equal area (mostly 200,400 ha), which varied greatly in their curlew density (2,47 birds per 100 ha) and also in substrate and other environmental features. Sites with the least resistant substrates had densities three times those with the most resistant substrates. Of 10 environmental characteristics measured for each site, substrate resistance was the best predictor of curlew density (r2 = 0.45). Characteristics that were poor predictors included distance to the nearest roost, level of human disturbance and distance to urban settlement. For a finer-scale assessment, microhabitat use and feeding behaviour were recorded during low tide within 12 intertidal flats, which varied in size (23,97 ha), substrate, topography and other features. Across all flats, curlews strongly preferred to feed relatively close (0,50 m) to the low-water line. They fed on a variety of substrates (including sand, sandy-mud, mud and seagrass) in broadly similar proportions to their occurrence in the habitat. There was a statistically significant preference for sand, although its magnitude was not strong. These results indicate that curlews select habitat most strongly at a between-flat rather than within-flat scale. [source]