Feeding Damage (feeding + damage)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


A comparison of the host-searching efficiency of two larval parasitoids of Plutella xylostella

ECOLOGICAL ENTOMOLOGY, Issue 1 2002
Xin-Geng Wang
Summary 1. A host specialist parasitoid is thought to have greater efficiency in locating hosts or greater ability to overcome host defence than a generalist species. This leads to the prediction that a specialist should locate and parasitise more hosts than a generalist in a given arena. The work reported here tested these predictions by comparing the host-searching behaviour of Diadegma semiclausum (a specialist) and Cotesia plutellae (an oligophagous species), two parasitoids of larval Plutella xylostella. 2. Both parasitoids employed antennal search and ovipositor search when seeking hosts but D. semiclausum also seemed to use visual perception in the immediate vicinity of hosts. 3. Larvae of P. xylostella avoided detection by parasitoids by moving away from damaged plant parts after short feeding bouts. When they encountered parasitoids, the larvae wriggled vigorously as they retreated and often hung from silk threads after dropping from a plant. 4. These two parasitoids differed in their responses to host defences. Diadegma semiclausum displayed a wide-area search around feeding damage and waited near the silk thread for a suspended host to climb up to the leaf, then attacked it again. Cotesia plutellae displayed an area-restricted search and usually pursued the host down the silk thread onto the ground. 5. Diadegma semiclausum showed a relatively fixed behavioural pattern leading to oviposition but C. plutellae exhibited a more plastic behavioural pattern. 6. The time spent by the two parasitoids on different plants increased with increasing host density, but the time spent either on all plants or a single plant by D. semiclausum was longer than that of C. plutellae. Diadegma semiclausum visited individual plants more frequently than C. plutellae before it left the patch, and stung hosts at more than twice the rate of C. plutellae. 7. The results indicated that the host-location strategies employed by D. semiclausum were adapted better to the host's defensive behaviour, and thus it was more effective at detecting and parasitising the host than was C. plutellae. [source]


Tillage affects the activity-density, absolute density, and feeding damage of the pea leaf weevil in spring pea

ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 3 2010
Timothy D. Hatten
Abstract Conversion from conventional-tillage (CT) to no-tillage (NT) agriculture can affect pests and beneficial organisms in various ways. NT has been shown to reduce the relative abundance and feeding damage of pea leaf weevil (PLW), Sitona lineatus L. (Coleoptera: Curculionidae) in spring pea, especially during the early-season colonization period in the Palouse region of northwest Idaho. Pitfall traps were used to quantify tillage effects on activity-density of PLW in field experiments conducted during 2001 and 2002. As capture rate of pitfall traps for PLW might be influenced by effects of tillage treatment, two mark-recapture studies were employed to compare trapping rates in NT and CT spring pea during 2003. Also in 2003, direct sampling was used to estimate PLW densities during the colonization period, and to assess PLW feeding damage on pea. PLW activity-density was significantly lower in NT relative to CT during the early colonization period (May) of 2001 and 2002, and during the late colonization period (June) of 2002. Activity-density was not different between treatments during the early emergence (July) or late emergence (August) periods in either year of the study. Trap capture rates did not differ between tillage systems in the mark-recapture studies, suggesting that pitfall trapping provided unbiased estimates of PLW relative abundances. PLW absolute densities and feeding damage were significantly lower in NT than in CT. These results indicate that NT provides a pest suppression benefit in spring pea. [source]


Synergistic effect of insect herbivory and plant parasitism on the performance of the invasive tree Schinus terebinthifolius

ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 2 2009
Veronica Manrique
Abstract Schinus terebinthifolius Raddi (Anacardiaceae) is an introduced tree from South America that has invaded many ecosystems throughout central and south Florida, USA. Exploratory surveys in the plant's native range identified several potential biocontrol agents, including the leaflet rolling moth, Episimus unguiculus Clarke (Lepidoptera: Tortricidae). The larval stages of E. unguiculus tie together the plant leaflets while feeding and can completely defoliate small plants. The native love vine, Cassytha filiformis L. (Lauraceae), has been found parasitizing S. terebinthifolius in Florida. Natural processes such as plant parasitism may be one of the components of an integrated approach for S. terebinthifolius management in Florida. Thus, the objective of this study was to evaluate the combined effects of insect herbivory and plant parasitism on the performance of S. terebinthifolius. A factorial design experiment was conducted in the greenhouse to determine the effect of C. filiformis parasitism and E. unguiculus feeding damage on the growth and biomass of S. terebinthifolius. Results showed that plant parameters, including leaflet biomass, growth rate, and flower production, were negatively affected by plant parasitism and insect herbivory. Moreover, the decrease in S. terebinthifolius performance was greater when these two factors were combined, indicative of a synergistic relationship. In addition, the combined effect of C. filiformis and E. unguiculus suppressed plant performance for at least 2 months after the moths were removed. Therefore, increased control of S. terebinthifolius stands may be achieved in those areas where C. filiformis is present in Florida (e.g., pinelands, hammock forests) if the biocontrol agent E. unguiculus is approved for release. [source]


The specialist seed predator Bruchidius dorsalis (Coleoptera: Bruchidae) plays a crucial role in the seed germination of its host plant, Gleditsia japonica (Leguminosae)

FUNCTIONAL ECOLOGY, Issue 2 2002
K. Takakura
Summary 1,This paper describes the germination mechanism of hard seeds of a species of honey locust, Gleditsia japonica, which can germinate only when externally damaged, in relation to four germinating factors: feeding damage by two specialist seed predators, a bean weevil (Bruchidius dorsalis) and a cydid bug (Adrisa magna); feeding damage by a generalist seed predator, a wild mouse (Apodemus speciosus); and physical damage. 2,In laboratory experiments, both the bean weevil and physical damage facilitated germination, while damage by the cydid bug and wild mouse did not. 3,In contrast to laboratory findings, field censuses of G. japonica seed survival revealed that more than 99% were damaged either by B. dorsalis or A. magna. Therefore, less than 0·5% of the seeds remained intact, preventing formation of a seed bank. 4,In addition, all germinating seeds found in the field contained B. dorsalis larvae. 5,These results strongly suggest that damage by B. dorsalis is a prerequisite for G. japonica germination, in contrast to the conventional view that physical disturbance, possibly flooding, is the primary germinating factor for hard seeds. [source]


Effect of generalist insect herbivores on introduced Lepidium draba (Brassicaceae): implications for the enemy release hypothesis

JOURNAL OF APPLIED ENTOMOLOGY, Issue 7 2008
K. P. Puliafico
Abstract The enemy release hypothesis (ERH) states that decreased regulation by natural enemies allows plants to increase in distribution, abundance and vigour following their introduction into an exotic range. Invasive plants rarely escape herbivory entirely, and for hoary cress [Lepidium draba L. (Brassicaceae)] it has been demonstrated that generalist insect abundance is greater in its introduced North American range than in the native European range. We assessed the role of increased generalist herbivory on hoary cress using representatives of four important herbivore niches commonly found in the introduced range. We experimentally examined the density dependent impact of these herbivores individually and in combination on hoary cress in a series of greenhouse experiments. We found that defoliation of the oligophagous diamondback moth Plutella xylostella (L.) (Lep., Plutellidae) had the strongest and most consistent impact, while damage by the stem-mining weevil Ceutorhynchus americanus Buchanan (Col., Curculionidae) tended to have the highest per capita effect. Plant response to feeding by the oligophagous crucifer flea beetle Phyllotreta cruciferae (Goeze) (Col., Chrysomelidae) was minor despite obvious feeding damage, and the impact of the polyphagous tarnished plant bug Lygus hesperus Knight (Het., Miridae) was negligible. In multiple-species experiments, herbivore impacts were usually additive. In general, we found that hoary cress can tolerate high densities of oligophagous insect herbivory and effectively resisted attack by the polyphagous L. hesperus, but also the oligophagous C. americanus. Our results indicate that a combination of plant resistance and tolerance allows hoary cress to withstand increased generalist herbivore load in its introduced range, consistent with the predictions of the ERH. [source]


A flexible sand coating (Conniflex) for the protection of conifer seedlings against damage by the pine weevil Hylobius abietis

AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 1 2009
Göran Nordlander
Abstract 1 A new method for the physical protection of conifer seedlings against feeding damage by Hylobius abietis (L.), is described and evaluated in field trials in Swedish forest plantations. 2 The lower 60% of the stem of the seedling is protected by the Conniflex coating, consisting of fine sand (grain size = 0.2 mm) embedded in an acrylate dispersion that remains flexible after drying. 3 Seedlings are treated in the nursery by a large-scale application procedure involving four steps: (i) spraying the seedlings with water; (ii) application of fixative to the lower sections of the stems, (iii) application of fine sand to the fixative; and (iv) drying of the fixative. 4 A field experiment over three seasons demonstrated a significant increase in survival for coated seedlings compared with untreated seedlings. The survival rate increased from 29% to 97% for Scots pine and from 26% to 86% for Norway spruce. Coating the lower 30% of the stem (instead of 60%) provided inferior protection, resulting in only 64% survival in spruce. 5 Field trials in 11 commercial plantation areas indicated that the Conniflex sand coating was as effective in protecting seedlings as treatment with the insecticide imidacloprid. 6 The new method of coating conifer seedlings with fine sand provides an effective and environmentally sound alternative to insecticide treatment. [source]


The nature and reality of the aphid clone: genetic variation, adaptation and evolution

AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 2 2008
Hugh D. Loxdale
Abstract 1,When aphid clones and clonality are discussed, it is still often said that they are ,genetically identical', a statement for which there is no direct evidence, and certainly not for the entire genome. By contrast, there is a growing body of empirical data from the application of high resolution molecular (DNA) markers that aphid asexual lineages rapidly mutate and that, in some documented cases, this variation is selectable, either positively or negatively. 2,Although it is true that, in enclosed conditions (e.g. laboratory or field cage), a so-called clone as defined as the asexual progeny of a single foundress may be traceable, this is rarely if ever possible in the field without the use of genetic markers, and even then, usually only at a relatively few loci (multilocus genotypes, ,MLGs'). 3,The continued use of the term clone without qualification of its true nature and the reality of its interesting biology is likely to hamper a proper understanding of the ecology and evolution of these insects (which are interesting in their own right because of their complex life histories, but also because they are important as major pests globally, both by causing direct feeding damage and by transmitting pathogenic plant viruses and thereby leading to huge economic losses in the agricultural, horticultural and forestry industries). 4,In this short review, I provide evidence of what is now known about aphid clonality after the widespread use of molecular markers, comprising information mainly gained within the last 15 years or so. 5,The data demonstrate widespread adaptation and evolution, sometimes involving introgression and hybridization. Because of this new knowledge, our ideas of what constitutes a clone are in need of serious re-evaluation. [source]


Cadmium hyperaccumulation protects Thlaspi caerulescens from leaf feeding damage by thrips (Frankliniella occidentalis)

NEW PHYTOLOGIST, Issue 3 2005
R. F. Jiang
Summary ,,Metal hyperaccumulation has been proposed as a plant defensive strategy. Here, we investigated whether cadmium (Cd) hyperaccumulation protected Thlaspi caerulescens from leaf feeding damage by thrips (Frankliniella occidentalis). ,,Two ecotypes differing in Cd accumulation, Ganges (high) and Prayon (low), were grown in compost amended with 0,1000 mg Cd kg,1 in two experiments under glasshouse conditions. F2 and F3 plants from the Prayon × Ganges crosses were grown with 5 mg Cd kg,1. Plants were naturally colonized by thrips and the leaf feeding damage index (LFDI) was assessed. ,,The LFDI decreased significantly with increasing Cd in both ecotypes, and correlated with shoot Cd concentration in a log-linear fashion. Prayon was more attractive to thrips than Ganges, but the ecotypic difference in the LFDI was largely accounted for by the shoot Cd concentration. In the F2 and F3 plants, the LFDI correlated significantly and negatively with shoot Cd, but not with shoot zinc (Zn) or sulphur (S) concentrations. ,,We conclude that Cd hyperaccumulation deters thrips from feeding on T. caerulescens leaves, which may offer an adaptive benefit to the plant. [source]


Persistence and performance of esfenvalerate residues on broccoli

PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 1 2002
George F Antonious
Abstract The efficacy of esfenvalerate (84,g,litre,1 EC; Asana XL) at 7.0,g,AI,ha,1 on broccoli was tested against the flea beetle, Phyllotreta cruciferae Goeze (Chrysomelidae: Coleoptera) and the imported cabbage worm, Pieris rapae L (Pieridae: Lepidoptera) under field conditions. Insect populations were monitored before and after treatment. Periodic sweep-net collections and examination of the leaves in treated and untreated broccoli plots revealed mean reductions of P cruciferae levels of nearly 98% 1 week post-application compared with untreated plots. The residual toxicity of esfenvalerate was also effective for 2 weeks in reducing population density of P rapae by 69% on broccoli leaves. The impact of esfenvalerate on feeding damage to broccoli leaves was established by counting the number of feeding holes made by P cruciferae on spring broccoli and P rapae on fall broccoli. As the leaf area ingested increased, a linear relationship was seen between the number of holes and number of insects. Results indicated that forage destruction by the two pests was significantly reduced by esfenvalerate application. Esfenvalerate was extracted from broccoli at 1,h and 1, 3, 7, 10, and 14 days post-application for residue analysis. Residues on spring broccoli were 12.2, 5.2 and 2.9,µg,cm,2 on the leaves and 0.13, 0.05 and 0.02,µg,g,1 on the heads at 1,h, 1 and 3 days, respectively. Only trace levels (0.001,µg,g,1) were detected in/on the heads 14 days after spraying. On the basis of half-life (T1/2) values, persistence of esfenvalerate on spring broccoli leaves (T1/2,=,1 day) was shorter than on fall broccoli (T1/2,=,1.6 days). T1/2 values were 2.1 and 3.6 days on spring and fall broccoli heads, respectively. The implications of these residue levels on re-entry times into treated fields are discussed. © 2001 Society of Chemical Industry [source]


Glyphosate applied to genetically modified herbicide-tolerant sugar beet and ,volunteer' potatoes reduces populations of potato cyst nematodes and the number and size of daughter tubers

ANNALS OF APPLIED BIOLOGY, Issue 3 2000
A M DEWAR
Summary Glyphosate, applied early or later or twice to genetically modified glyphosate-tolerant sugar beet, gave excellent control of planted ,volunteer' potatoes growing within the crop compared to conventional herbicide programmes with or without clopyralid. In three out of four trials, this resulted in significant reductions in the numbers of eggs and cysts of potato cyst nematodes (Globodera rostochiensis and G. pallida) where infestations were moderate (23,89 eggs g,1 soil). In the fourth trial, which had very high initial populations (130 eggs ,1 soil), none of the herbicide treatments had any significant effect on numbers of nematode eggs or cysts. This was probably due to competition for feeding sites, and the early death of the potatoes in all treatments caused by feeding damage by the nematodes and infection by blight, which prevented the nematodes from completing their life cycle. Glyphosate also significantly reduced the number and size of daughter tubers produced, thus helping to prevent a further volunteer problem in the next crop in the rotation. This was achieved by one or two applications of one chemical compared to 2,5 applications of cocktails of conventional herbicides. [source]


Identification of endo- and exo-polygalacturonase activity in Lygus hesperus (Knight) salivary glands,

ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 2 2009
Maria de la Paz Celorio-Mancera
Abstract Polygalacturonase (PG) activity found in the salivary gland apparatus of the western tarnished plant bug (WTPB, Lygus hesperus Knight) has been thought to be the main chemical cause of the damage inflicted by this mirid when feeding on its plant hosts. Early viscosity and thermal stability studies of the PG activity in L. hesperus protein extracts were difficult to interpret. Thus, it has been suggested that one or more PG protein(s) with different hydrolytic modes of action are produced by this mirid. In order to understand the quantitative complexity of the WTPB salivary PG activity, PG purification from a protein extract from salivary glands excised from L. hesperus insects was performed using affinity and ion exchange chromatography. To elucidate the qualitative complexity of the purified PGs, the digestion products generated by the PGs were separated using high performance anion exchange chromatography with pulsed amperometric detection. At least five PG proteins were detected; these differing in terms of their glycosylation, mass-to-charge ratios, and/or molecular mass. The characterization of the products generated by these PGs showed that endo- and exo-acting PGs are produced by WTPB. Although none of the PGs was purified to homogeneity, the present work provides biochemical evidence of a multiplicity of PGs that degrade the pectin component of the plant tissue in different fashions. The implications of these findings affect the understanding of WTPB feeding damage and, potentially, help identify ways to control this important crop pest. Arch. Insect Biochem. Physiol. 2008. © 2008 Wiley-Liss, Inc. [source]


Micro-injection of lygus salivary gland proteins to simulate feeding damage in alfalfa and cotton flowers ,

ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 2 2005
Kenneth A. Shackel
Abstract Alfalfa and cotton flowers were pierced with small glass capillaries of an overall size and shape similar to that of Lygus stylets, and injected with small quantities (6 to 100 nL) of solutions that contained Lygus salivary enzymes. Crude and partially purified protein solutions from Lygus heads and isolated salivary glands showed substantial polygalacturonase (PG) activity, as has been previously reported. Following injection with both crude and partially purified protein solutions, as well as with pure fungal and bacterial PGs, flowers of both alfalfa and cotton exhibited damage similar to that caused by Lygus feeding. Injection with the same volume of a buffer control as well as a buffer control containing BSA at a comparable protein concentration (approximately 6 ,g/mL) showed no symptoms. These results are consistent with a previously suggested hypothesis that the extensive tissue damage caused by Lygus feeding is primarily due to the action of the PG enzyme on the host tissue, rather than to mechanical damage caused by the insect stylet. Substantial genotypic variation for a PG inhibiting protein (PGIP) exists in alfalfa and cotton. We, therefore, suggest that breeding and selection for increased native PGIP levels, or transformation with genes encoding PGIP from other plant species, may be of value in obtaining alfalfa and cotton varieties that are more resistant to Lygus feeding damage. Arch. Insect Biochem. Physiol. 58:69,83, 2005. © 2005 Wiley-Liss, Inc. [source]


Plant-Arthropod Associations from the Lower Miocene of the Most Basin in Northern Bohemia (Czech Republic): A Preliminary Report

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 4 2010
Jakub PROKOP
Abstract: Terrestrial plants and insects currently account for the majority of the Earth's biodiversity, and approximately half of insect species are herbivores. Thus, insects and plants share ancient associations that date back more than 400 Myr. However, investigations of their past interactions are at the preliminary stages in Western Europe. Herein, we present the first results of our study of various feeding damage based on a dataset of nearly 3500 examined plant specimens from the Lower Miocene of the Lagerstätte Bķlina Mine in the Most Basin, Czech Republic. This site provides a unique view of the Neogene freshwater ecosystems. It has long been studied by scientists working in different branches of sedimentology, paleobotany, and paleozoology. The fossils are preserved in three characteristic horizons overlaying the coal seam (Clayey Superseam Horizon, Delta Sandy Horizon, and Lake Clayey Horizon), reflecting paleoenvironmental changes in a short time period of development. The trace fossils are classified as functional feeding groups or "guilds", without searching for a direct cause or a recent analog host relation. Approximately 23% of specimens of dicotyledonous plant leaves were found to be damaged and associated with some leaf "morphotypes". Deciduous plant-host taxa, and those with a chartaceous texture typical of riparian habitats, were frequently damaged, such as Populus, recorded with two species Populus zaddachii and Populus populina (57.9% and 31% herbivory levels, respectively), followed by Acer, Alnus, and Carya, averaging almost 30% of damaged leaves/leaflets. There has been evidence of 60 damage types (DT) representing all functional feeding groups recorded at the Bķlina Mine, including 12 types of leaf mines and 16 gall-type DT. In total, Lower Miocene of the Lagerstätte Bķlina Mine exhibits a high level of external foliage feeding types (23.7%), and a low level of more specialized DT, such as galls (4.3%) and leaf mines (<1%). A broader comparison based on DT of the main sedimentary environments shows significance supporting different biomes by frequency of damage levels and DT diversities. [source]