Air Dehydration (air + dehydration)

Distribution by Scientific Domains

Kinds of Air Dehydration

  • hot air dehydration


  • Selected Abstracts


    Comparative Study of Quality Changes Occurring on Dehydration and Rehydration of Cooked Chickpeas (Cicer Arietinum L.) Subjected to Combined Microwave,Convective and Convective Hot Air Dehydration

    JOURNAL OF FOOD SCIENCE, Issue 6 2006
    A.A. Gowen
    ABSTRACT:, Convective hot air dehydration (100 °C) of cooked chickpeas was compared with the combination of microwave,convective hot air dehydration, in terms of microstructure, density, color, texture, dehydration, and rehydration. In the combined drying experiments, 2 levels of microwave power (100 W and 200 W) were investigated, combined continuously with convective air drying at 100 °C. Compared with convective hot air drying, combination drying led to a considerable reduction in dehydration time. Combination drying also improved the porosity of the finished dehydrated product, leading to faster rehydration kinetics. Cryogenic scanning electron microscopy micrographs showed that chickpeas subjected to combined drying experienced less shrinkage than those dried by convective hot air. Combination drying at the higher (200 W) level produced a darker (P < 0.05) rehydrated product with significantly lower relative rehydrated moisture content (P < 0.05) when compared with the lower (100 W) level of combination drying. [source]


    Hot air dehydration of figs (Ficus carica L.): drying kinetics and quality loss

    INTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 7 2004
    Antonio Piga
    Summary The dehydration of fruit from fig trees is normally achieved by sun drying. There is concern about the safety of the end product, mainly because there is a risk of the development of aflatoxins. These concerns can be overcome by artificial drying (oven dehydration). Fig fruits of a local cultivar, which were either pre-treated by blanching or blanching plus sulphuring or not treated at all, underwent hot air dehydration under mild processing conditions in a pilot airflow cabinet dryer. Sampling was carried out at regular intervals to calculate the rate of dehydration and assess quality changes. Microbiological counts and nonenzymatic browning were also monitored. Pretreatments resulted in a shorter processing time, compared with control fruits. In general, a falling dehydration rate period was observed. A dramatic loss of ascorbic acid was recorded, while an informal sensorial assay of the dried fruits gave a positive assessment. [source]


    Microwave and convective dehydration of ethanol treated and frozen apple , physical properties and drying kinetics

    INTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 6 2002
    Tomas Funebo
    The objective of this study was to examine how the drying kinetics and physical properties of apples are affected by pre-treatment with 95% ethanol or freezing at ,18 °C before microwave-assisted air dehydration at 50, 60 and 70 °C. Microwave heating was used to obtain these temperatures in the centre of the apple cubes. After dehydration the shrinkage and rehydration capacity were measured. The texture of dehydrated and rehydrated samples was analysed with a puncture test in a texture analyser. Samples were also analysed with confocal laser scanning microscopy to determine the correlation between physical and microstructural properties. Diffusivity in the different dehydration processes was calculated. Ethanol-treated apples showed both high rehydration and high effective rehydration capacity compared with the other samples. Freezing before dehydration increased the diffusivity and reduced the firmness of rehydrated apples compared with no pre-treatment. [source]


    Comparative Study of Quality Changes Occurring on Dehydration and Rehydration of Cooked Chickpeas (Cicer Arietinum L.) Subjected to Combined Microwave,Convective and Convective Hot Air Dehydration

    JOURNAL OF FOOD SCIENCE, Issue 6 2006
    A.A. Gowen
    ABSTRACT:, Convective hot air dehydration (100 °C) of cooked chickpeas was compared with the combination of microwave,convective hot air dehydration, in terms of microstructure, density, color, texture, dehydration, and rehydration. In the combined drying experiments, 2 levels of microwave power (100 W and 200 W) were investigated, combined continuously with convective air drying at 100 °C. Compared with convective hot air drying, combination drying led to a considerable reduction in dehydration time. Combination drying also improved the porosity of the finished dehydrated product, leading to faster rehydration kinetics. Cryogenic scanning electron microscopy micrographs showed that chickpeas subjected to combined drying experienced less shrinkage than those dried by convective hot air. Combination drying at the higher (200 W) level produced a darker (P < 0.05) rehydrated product with significantly lower relative rehydrated moisture content (P < 0.05) when compared with the lower (100 W) level of combination drying. [source]


    A New Numerical Approach for a Detailed Multicomponent Gas Separation Membrane Model and AspenPlus Simulation

    CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 7 2005
    M. H. Murad Chowdhury
    Abstract A new numerical solution approach for a widely accepted model developed earlier by Pan [1] for multicomponent gas separation by high-flux asymmetric membranes is presented. The advantage of the new technique is that it can easily be incorporated into commercial process simulators such as AspenPlusTM [2] as a user-model for an overall membrane process study and for the design and simulation of hybrid processes (i.e., membrane plus chemical absorption or membrane plus physical absorption). The proposed technique does not require initial estimates of the pressure, flow and concentration profiles inside the fiber as does in Pan's original approach, thus allowing faster execution of the model equations. The numerical solution was formulated as an initial value problem (IVP). Either Adams-Moulton's or Gear's backward differentiation formulas (BDF) method was used for solving the non-linear differential equations, and a modified Powell hybrid algorithm with a finite-difference approximation of the Jacobian was used to solve the non-linear algebraic equations. The model predictions were validated with experimental data reported in the literature for different types of membrane gas separation systems with or without purge streams. The robustness of the new numerical technique was also tested by simulating the stiff type of problems such as air dehydration. This demonstrates the potential of the new solution technique to handle different membrane systems conveniently. As an illustration, a multi-stage membrane plant with recycle and purge streams has been designed and simulated for CO2 capture from a 500,MW power plant flue gas as a first step to build hybrid processes and also to make an economic comparison among different existing separation technologies available for CO2 separation from flue gas. [source]