Few Tens (few + ten)

Distribution by Scientific Domains
Distribution within Physics and Astronomy

Kinds of Few Tens

  • only a few ten


  • Selected Abstracts


    Emission Intensity Enhancement of DC Arc Plasma Induced by External Oscillating Magnetic Field

    CONTRIBUTIONS TO PLASMA PHYSICS, Issue 10 2007
    M. M. Stoiljkovi
    Abstract Direct current (dc) arc plasma with continuous aerosol supply was coupled with an external oscillatingmagnetic field of a few tens of mT and a frequency of up to 1 kHz. Such configuration was used to alter the plasma-related radiative properties. The magnetic field was oriented perpendicularly to the electric field in the plasma and forced the arc column to oscillate as a whole with respect to the surrounding atmosphere. The magnitude of the appliedmagnetic.eld controls the amplitude of the oscillatory motion. Several parameters that can contribute to the radiative properties of the plasma were investigated (arc current, composition of aerosol introduced into the plasma, amplitude and frequency of the magnetic field applied). Spectral emission from different zones of the plasma column was measured by optical emission spectroscopy (OES). In comparison to steady-state plasma, the applied magnetic field induces an intensity enhancement of emission of the most analytes considered. The intensity enhancement is strongly affected by the amplitude and frequency of plasma column oscillations, i.e. by plasma column velocity. Also, intensity enhancement depends on the plasma zone observed. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    The micro-topography of the wetlands of the Okavango Delta, Botswana

    EARTH SURFACE PROCESSES AND LANDFORMS, Issue 1 2005
    T. Gumbricht
    Abstract The surface of the 40 000 km2 Okavango alluvial fan is remarkably smooth, and almost everywhere lies within two to three metres of a perfectly smooth theoretical surface. Deviations from this perfect surface give rise to islands in the Okavango wetlands. This micro-topography was mapped by assigning empirical elevations to remotely sensed vegetation community classes, based on the observation that vegetation is very sensitive to small, local differences in elevation. Even though empirical, the method produces fairly accurate results. The technique allows estimation of depths of inundation and therefore will be applicable even when high resolution radar altimetry becomes available. The micro-topography has arisen as a result of clastic sedimentation in distributary channels, which produces local relief of less than two metres, and more importantly as a result of chemical precipitation in island soils, which produces similar local relief. The micro-topography is, therefore, an expression of the non-random sedimentation taking place on the fan. Volume calculations of islands extracted from the micro-topography, combined with estimates of current sediment in,ux, suggest that the land surface of the wetland may only be a few tens of thousands of years old. Constant switching of water distribution, driven by local aggradation, has distributed sediment widely. Mass balance calculations suggest that over a period of c. 150 000 years all of the fan would at one time or other have been inundated, and thus subject to sedimentation. Coalescing of islands over time results in net aggradation of the fan surface. The amount of vertical aggradation on islands and in channels is restricted by the water depth. Restricted vertical relief, in turn, maximizes the distribution of water, limiting its average depth. Aggradation in the permanent swamps occurs predominantly by clastic sedimentation. Rates of aggradation here are very similar to those in the seasonal swamps, maintaining the overall gradient, possibly because of the operation of a feedback loop between the two. The limited amount of local aggradation arising from both clastic and chemical sedimentation, combined with constant changes in water distribution, has resulted in a near-perfect conical surface over the fan. In addition to providing information on sedimentary processes, the micro-topography has several useful hydrological applications. Copyright © 2004 John Wiley & Sons, Ltd. [source]


    A practical protocol to assess impacts of unplanned disturbance: a case study in Tuggerah Lakes Estuary, NSW

    ECOLOGICAL MANAGEMENT & RESTORATION, Issue 2003
    A. J. Underwood
    Summary Environmental managers are often confronted with unplanned or accidental disturbances that may lead to environmental impacts. Procedures for detecting or measuring the size of such impacts are complicated because of the lack of data available before the disturbance and because of the intrinsic variability of most natural measures. Here, a protocol for detecting impacts is illustrated for single-measure variables (numbers of individual species) and multivariate measures (relative abundances of invertebrates in assemblages). The present paper describes a case concerning drainage of acidified water into an estuary due to construction of a drainage channel in an area of wetland for which there had been no prior investigations (i.e. no ,before' data). The spatial extent of any impact was also unknowable. Sampling was, therefore, designed to allow for impacts of only a few tens of metres (using control sites 50 m from the mouth of the channel) and impacts covering much larger areas (500 m and 1 km from the mouth of the channel). Invertebrates in the mud around the channel and in control sites were sampled in replicated cores and the amount of seagrass in each core was weighed. Average abundances of invertebrate animals and weights of seagrass were compared, as was variation among samples in potentially impacted and control sites (using univariate analyses of variance). Sets of species were compared using multivariate methods to test the hypothesis that there was an impact at one of the scales examined. In fact, there was no evidence for any sort of impact on the fauna or seagrasses; the disturbance was a short-term pulse without any obvious or sustained ecological response. One consequence of the study was that the local council was able to demonstrate no impact requiring remediation and no penalties were imposed for the unapproved construction of the channel. The implications of this type of study after an environmental disturbance are discussed. The present study identifies the need for clear definition of relevant hypotheses, coupled with rigorous planning of sampling and analyses, so that reliable answers are available to regulators and managers. [source]


    Interpretation of observed fluid potential patterns in a deep sedimentary basin under tectonic compression: Hungarian Great Plain, Pannonian Basin

    GEOFLUIDS (ELECTRONIC), Issue 1 2001
    J. Tóth
    Abstract The , 40 000 km2 Hungarian Great Plain portion of the Pannonian Basin consists of a basin fill of 100 m to more than 7000 m thick semi- to unconsolidated marine, deltaic, lacustrine and fluviatile clastic sediments of Neogene age, resting on a strongly tectonized Pre-Neogene basement of horst-and-graben topography of a relief in excess of 5000 m. The basement is built of a great variety of brittle rocks, including flysch, carbonates and metamorphics. The relatively continuous Endr,d Aquitard, with a permeability of less than 1 md (10,15 m2) and a depth varying between 500 and 5000 m, divides the basin's rock framework into upper and lower sequences of highly permeable rock units, whose permeabilities range from a few tens to several thousands of millidarcy. Subsurface fluid potential and flow fields were inferred from 16 192 water level and pore pressure measurements using three methods of representation: pressure,elevation profiles; hydraulic head maps; and hydraulic cross-sections. Pressure,elevation profiles were constructed for eight areas. Typically, they start from the surface with a straight-line segment of a hydrostatic gradient (,st = 9.8067 MPa km,1) and extend to depths of 1400,2500 m. At high surface elevations, the gradient is slightly smaller than hydrostatic, while at low elevations it is slightly greater. At greater depths, both the pressures and their vertical gradients are uniformly superhydrostatic. The transition to the overpressured depths may be gradual, with a gradient of ,dyn = 10,15 MPa km,1 over a vertical distance of 400,1000 m, or abrupt, with a pressure jump of up to 10 MPa km,1 over less than 100 m and a gradient of ,dyn > 20 MPa km,1. According to the hydraulic head maps for 13 100,500 m thick horizontal slices of the rock framework, the fluid potential in the near-surface domains declines with depth beneath positive topographic features, but it increases beneath depressions. The approximate boundary between these hydraulically contrasting regions is the 100 m elevation contour line in the Duna,Tisza interfluve, and the 100,110 m contours in the Nyírség uplands. Below depths of ,,600 m, islets of superhydrostatic heads develop which grow in number, areal extent and height as the depth increases; hydraulic heads may exceed 3000 m locally. A hydraulic head ,escarpment' appears gradually in the elevation range of ,,1000 to ,,2800 m along an arcuate line which tracks a major regional fault zone striking NE,SW: heads drop stepwise by several hundred metres, at places 2000 m, from its north and west sides to the south and east. The escarpment forms a ,fluid potential bank' between a ,fluid potential highland' (500,2500 m) to the north and west, and a ,fluid potential basin' (100,500 m) to the south and east. A ,potential island' rises 1000 m high above this basin further south. According to four vertical hydraulic sections, groundwater flow is controlled by the topography in the upper 200,1700 m of the basin; the driving force is orientated downwards beneath the highlands and upwards beneath the lowlands. However, it is directed uniformly upwards at greater depths. The transition between the two regimes may be gradual or abrupt, as indicated by wide or dense spacing of the hydraulic head contours, respectively. Pressure ,plumes' or ,ridges' may protrude to shallow depths along faults originating in the basement. The basement horsts appear to be overpressured relative to the intervening grabens. The principal thesis of this paper is that the two main driving forces of fluid flow in the basin are gravitation, due to elevation differences of the topographic relief, and tectonic compression. The flow field is unconfined in the gravitational regime, whereas it is confined in the compressional regime. The nature and geometry of the fluid potential field between the two regimes are controlled by the sedimentary and structural features of the rock units in that domain, characterized by highly permeable and localized sedimentary windows, conductive faults and fracture zones. The transition between the two potential fields can be gradual or abrupt in the vertical, and island-like or ridge-like in plan view. The depth of the boundary zone can vary between 400 and 2000 m. Recharge to the gravitational regime is inferred to occur from infiltrating precipitation water, whereas that to the confined regime is from pore volume reduction due to the basement's tectonic compression. [source]


    On the structural age of the Rhoscolyn antiform, Anglesey, North Wales

    GEOLOGICAL JOURNAL, Issue 2 2004
    Hossein Hassani
    Abstract In the Rhoscolyn area of Anglesey, the late Precambrian interbedded psammites and pelites of the Monian Supergroup are folded into a kilometre-scale antiform, plunging about 25°NE and with an axial surface dipping about 40°NW. Numerous folds of up to a few tens of metres in wavelength are present on both limbs of this antiform. These smaller-scale folds also plunge about 25°NE but clearly belong to two separate episodes of folding, and it has become a matter of longstanding controversy as to whether the larger antiform belongs to the first or second of these episodes. Close examination of the cleavage/bedding asymmetries from all the lithologies, however, shows that the large antiform is a second-generation structure, and that on the gently dipping northwest limb, the sense of cleavage/bedding asymmetry of the earlier cleavage in the psammitic units has been almost uniformly and homogeneously reversed (so that it appears to be axial planar to the antiform), while in the pelitic units the sense of cleavage/bedding asymmetry of the earlier cleavage has been preserved. Many of the small-scale complexities of the observed cleavage/bedding relationships may be explained by appealing to differences in the timing of the formation of buckling instabilities relative to this reorientation of the early cleavage in the psammites during the second deformation. A first-order analysis of the finite strains from around the large-scale antiform shows that the orientation of the first cleavage prior to the second deformation was steeply dipping to the southeast. The second deformation correlates with the southeast-verging Caledonian deformation affecting the Monian and Ordovician units elsewhere in northwest Anglesey, while the northwest-verging first deformation event, which is not present in the Ordovician rocks, must have occurred before they were deposited. Copyright © 2004 John Wiley & Sons, Ltd. [source]


    Transparent Photo-Stable Complementary Inverter with an Organic/Inorganic Nanohybrid Dielectric Layer

    ADVANCED FUNCTIONAL MATERIALS, Issue 5 2009
    Min Suk Oh
    Abstract Transparent electronics has been one of the key terminologies forecasting the ubiquitous technology era. Several researchers have thus extensively developed transparent oxide-based thin-film transistors (TFTs) on glass and plastic substrates. However, work in transparent electronics has been limited mostly to high-voltage devices operating at more than a few tens of volts, and has mainly focused on transparent display drivers. Low-voltage logic devices, such as transparent complementary inverters, operating in an electrically stable and photo-stable manner, are now very necessary to practically realize transparent electronics. Electrically stable dielectrics with high strength and high capacitance must also be proposed to support this mission, and simultaneously these dielectrics must be compatible with both n- and p-channel TFTs in device fabrication. Here, a nanohybrid dielectric layer that is composed of multiple units of inorganic oxide and organic self-assembled monolayer is proposel to support a transparent complementary TFT inverter operating at 3,V. [source]


    A novel lattice-spacing comparator with resolution of 10,8

    JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 2 2003
    Xiaowei Zhang
    A novel, fast and stable system for measuring the lattice spacing of a silicon crystal with a precision of 10,8 is described. Self selection of monochromatic X-rays by a monolithic double channel-cut crystal monochromator (MDCM), producing silicon 264 and 624 diffraction, may lead to a stable, highly collimated and narrow-bandwidth beam. When utilizing the 264 and 624 Bragg reflections of a silicon sample, the angular distance between the two associated Bragg peaks must be extremely small, so that the diffraction angle can be determined with high precision and the traveling time from one peak to the other can be considerably reduced by the order of at least three compared with the established classical Bond method. This so-called self-reference comparator method can dramatically save measurement time and can provide an absolute measurement on the basis of the known X-ray wavelength available from the MDCM. Thus a lattice-spacing measurement with resolution of 10,8, within a few tens of seconds for an area of 1,mm2 on a silicon sample, has been realised. [source]


    Microfabric of folded quartz veins in metagreywackes: dislocation creep and subgrain rotation at high stress

    JOURNAL OF METAMORPHIC GEOLOGY, Issue 8 2009
    C. A. TREPMANN
    Abstract The microfabrics of folded quartz veins in fine-grained high pressure,low temperature metamorphic greywackes of the Franciscan Subduction Complex at Pacheco Pass, California, were investigated by optical microscopy, scanning electron microscopy including electron backscatter diffraction, and transmission electron microscopy. The foliated host metagreywacke is deformed by dissolution,precipitation creep, as indicated by the shape preferred orientation of mica and clastic quartz without any signs of crystal-plastic deformation. The absence of crystal-plastic deformation of clastic quartz suggests that the flow stress in the host metagreywacke remained below a few tens of MPa at temperatures of 250,300 °C. In contrast, the microfabric of the folded quartz veins indicates deformation by dislocation creep accompanied by subgrain rotation recrystallization. For the small recrystallized grain size of ,8 ± 6 ,m, paleopiezometers indicate differential stresses of a few hundred MPa. The stress concentration in the single phase quartz vein is interpreted to be due to its higher effective viscosity compared to the fine-grained host metagreywacke deforming by dissolution,precipitation creep. The fold shape suggests a viscosity contrast of one to two orders of magnitude. Deformation by dissolution,precipitation creep is expected to be a continuous process. The same must hold for folding of the vein and deformation of the vein quartz by dislocation creep. The microfabric suggests dynamic recrystallization predominantly by subgrain rotation and only minor strain-induced grain boundary migration, which requires low contrasts in dislocation density across high-angle grain boundaries to be maintained during climb-controlled creep at high differential stress. The record of quartz in these continuously deformed veins is characteristic and different from the record in metamorphic rocks exhumed in seismically active regions, where high-stress deformation at similar temperatures is episodic and related to the seismic cycle. [source]


    New developments in the characterization of dislocation loops from LACBED patterns

    JOURNAL OF MICROSCOPY, Issue 3 2006
    J. P. MORNIROLI
    Summary The characterization of the Burgers vector of dislocations from large-angle convergent-beam electron diffraction (LACBED) patterns is now a well-established method. The method has already been applied to relatively large and isolated dislocation loops in semiconductors. Nevertheless, some severe experimental difficulties are encountered with small dislocation loops. By using a 2 µm selected-area aperture and a carbon contamination point to mark the loop of interest, we were able to characterize both the plane and the Burgers vector of dislocation loops of a few tens of nanometres in size present in Al-Cu-Mg alloys. [source]


    Preparation of LiMn2O4 powders via spray pyrolysis and fluidized bed hybrid system

    AICHE JOURNAL, Issue 7 2006
    Izumi Taniguchi
    Abstract A novel technique has been developed to directly produce fine ceramic powders from liquid solution using a spray pyrolysis and fluidized bed hybrid system. Using this technique, the preparation of lithium manganese oxides LiMn2O4, which are the most promising cathode materials for lithium-ion batteries, has been carried out for various superficial gas velocities U0 = 0.30-0.91 m/s, static bed heights Ls = 50-150 mm, and medium particle sizes dpm,g = 294-498 ,m. The resulting powders had spherical nanostructured particles that comprised primary particles with a few tens of nanometer in size, and they exhibited a pure cubic spinel structure without any impurities in the XRD patterns. Moreover, the as-prepared powders showed better crystallinity and smaller specific surface area than those by conventional spray pyrolysis. The effects of process parameters on powder properties, such as specific surface area and crystallinity, were investigated for a wide range of superficial gas velocities and static bed heights. An as-prepared sample was used as cathode active materials for lithium-ion batteries and the cell performance has been investigated. Test experiments in the electrochemical cell Li/1M LiClO4 in PC/LiMn2O4 demonstrated that the sample prepared by the present technique was superior to that by the conventional spray pyrolysis and solid-state reaction method. © 2006 American Institute of Chemical Engineers AIChE J, 2006 [source]


    Microstructure Tailoring for High Thermal Conductivity of ,-Si3N4 Ceramics

    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 1 2003
    Hiroshi Yokota
    ,-Si3N4 ceramics sintered with Yb2O3 and ZrO2 were fabricated by gas-pressure sintering at 1950°C for 16 h changing the ratio of "fine" and "coarse" high-purity ,-Si3N4 raw powders, and their microstructures were quantitatively evaluated. It was found that the amount of large grains (greater than a few tens of micrometers) could be drastically reduced by mixing a small amount of "coarse" powder with a "fine" one, while maintaining high thermal conductivity (>140 W·(m·K),1). Thus, this work demonstrates that it is possible for ,-Si3N4 ceramics to achieve high thermal conductivity and high strength simultaneously by optimizing the particle size distribution of raw powder. [source]


    Analytical Electron Microscopy Study of Green Ceramics Formed from Aqueous Suspensions Using the Hydrolysis-Assisted Solidification Process

    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 1 2002
    a Novak
    During the hydrolysis-assisted solidification (HAS) of aqueous ceramic suspensions, aluminum hydroxides are formed that bind the ceramic particles into a stiff wet body. Transmission electron microscopy investigations of HAS-processed Al2O3 and ZrO2 green parts after drying revealed that the secondary phase is amorphous and distributed uniformly around the host ceramic particles. The estimated thickness of this layer was 3,5 nm. Moreover, areas of a few tens of nanometers in size were found at three-particle junctions that contained an amorphous phase and individual nanocrystals of boehmite. [source]


    Synaptic structure, distribution, and circuitry in the central nervous system of the locust and related insects

    MICROSCOPY RESEARCH AND TECHNIQUE, Issue 3 2002
    Alan Hugh David Watson
    Abstract The Orthopteran central nervous system has proved a fertile substrate for combined morphological and physiological studies of identified neurons. Electron microscopy reveals two major types of synaptic contacts between nerve fibres: chemical synapses (which predominate) and electrotonic (gap) junctions. The chemical synapses are characterized by a structural asymmetry between the pre- and postsynaptic electron dense paramembranous structures. The postsynaptic paramembranous density defines the extent of a synaptic contact that varies according to synaptic type and location in single identified neurons. Synaptic bars are the most prominent presynaptic element at both monadic and dyadic (divergent) synapses. These are associated with small electron lucent synaptic vesicles in neurons that are cholinergic or glutamatergic (round vesicles) or GABAergic (pleomorphic vesicles). Dense core vesicles of different sizes are indicative of the presence of peptide or amine transmitters. Synapses are mostly found on small-diameter neuropilar branches and the number of synaptic contacts constituting a single physiological synapse ranges from a few tens to several thousand depending on the neurones involved. Some principles of synaptic circuitry can be deduced from the analysis of highly ordered brain neuropiles. With the light microscope, synaptic location can be inferred from the distribution of the presynaptic protein synapsin I. In the ventral nerve cord, identified neurons that are components of circuits subserving known behaviours, have been studied using electrophysiology in combination with light and electron microscopy and immunocytochemistry of neuroactive compounds. This has allowed the synaptic distribution of the major classes of neurone in the ventral nerve cord to be analysed within a functional context. Microsc. Res. Tech. 56:210,226, 2002. © 2002 Wiley-Liss, Inc. [source]


    Impact craters on small icy bodies such as icy satellites and comet nuclei

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2005
    M. J. Burchell
    ABSTRACT Laboratory data and the results of modelling are combined to predict the possible size of craters in icy bodies such as a comet nucleus. This is done in particular for the case of a a 370-kg mass impacting a body the size of the nucleus of comet 9P/Temple-1 at 10 km s,1. This reproduces the Deep Impact comet impact to occur in 2005, when a NASA spacecraft will observe at close range an impact on the comet nucleus of an object deployed from the main spacecraft. The predicted crater size depends not only on uncertainties in extrapolation from laboratory scale and the modelling in general, but also on assumptions made about the nature of the target. In particular, allowance is made for the full range of reasonable target porosities; this can significantly affect the outcome of the Deep Impact event. The range of predicted crater sizes covers some 7,30 m crater depth and some 50,150 m crater diameter. An increasingly porous target (i.e. one with a higher percentage of void space) will increase the depth of the crater but not necessarily the diameter, leading to the possibility of an impact event where much of the crater formation is in the interior of the crater, with work going into compaction of void space and some possible lateral growth of the crater below the surface entrance. Nevertheless, for a wide range of scenarios concerning the nature of the impact, the Deep Impact event should penetrate the surface to depths of a few tens of metres, accessing the immediate subsurface regions. In parallel to this, the same extrapolation methods are used to predict the size of impactors that may have caused the features observed on the surfaces of small bodies, e.g. the Saturnian satellite Phoebe and the nucleus of comet P/Wild-2. [source]


    Galaxy groups in the Two-degree Field Galaxy Redshift Survey: the luminous content of the groups

    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2004
    V. R. Eke
    ABSTRACT The Two-degree Field Galaxy Redshift Survey (2dFGRS) Percolation-Inferred Galaxy Group (2PIGG) catalogue of ,29 000 objects is used to study the luminous content of galaxy systems of various sizes. Mock galaxy catalogues constructed from cosmological simulations are used to gauge the accuracy with which intrinsic group properties can be recovered. It is found that a Schechter function is a reasonable fit to the galaxy luminosity functions in groups of different mass in the real data, and that the characteristic luminosity L, is slightly larger for more massive groups. However, the mock data show that the shape of the recovered luminosity function is expected to differ from the true shape, and this must be allowed for when interpreting the data. Luminosity function results are presented in both the bJ and rF wavebands. The variation of the halo mass-to-light ratio, ,, with group size is studied in both of these wavebands. A robust trend of increasing , with increasing group luminosity is found in the 2PIGG data. Going from groups with bJ luminosities equal to 1010 h,2 L, to those 100 times more luminous, the typical bJ -band mass-to-light ratio increases by a factor of 5, whereas the rF -band mass-to-light ratio grows by a factor of 3.5. These trends agree well with the predictions of the simulations which also predict a minimum in the mass-to-light ratio on a scale roughly corresponding to the Local Group. The data indicate that if such a minimum exists, then it must occur at L, 1010h,2 L,, below the range accurately probed by the 2PIGG catalogue. According to the mock data, the bJ mass-to-light ratios of the largest groups are expected to be approximately 1.1 times the global value. Assuming that this correction applies to the real data, the mean bJ luminosity density of the Universe yields an estimate of ,m= 0.26 ± 0.03 (statistical error only). Various possible sources of systematic error are considered, with the conclusion that these could affect the estimate of ,m by a few tens of per cent. [source]


    Bacteriochlorophyll e Monomers, but Not Aggregates, Sensitize Singlet Oxygen: Implications for a Self-photoprotection Mechanism in Chlorosomes,

    PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2002
    Juan B. Arellano
    ABSTRACT Sensitization of singlet delta oxygen (O2(1,g)) by bacteriochlorophyll e (BChle) has been investigated to gain a better understanding of the photoprotection mechanism(s) operating in chlorosomes of green photosynthetic bacteria. The sensitization process has been studied in media where BChle forms monomers (acetone and aqueous solutions containing 0.5% Triton X-100 [TX]) and in systems where BChle aggregates, namely, aqueous solutions containing 0.003% monogalactosyl diglyceride (MGDG) and chlorosomes (control as well as hexanol perturbed) from Chlorobium phaeobacteroides strain CL1401. In Ar-purged acetone, BChle triplets (BChle,) have a lifetime of a few tens of microseconds; however, in air-saturated acetone, quenching of BChle, by ground-state oxygen (O2(3,,g)) and formation of O2(1,g) take place. The O2(1,g) so formed is susceptible to quenching by BChle0, a ground-state BChle molecule. A Stern,Volmer analysis reveals a linear fit between the decay rate of O2(1,g) and the BChle concentration. The rate constants for the quenching of O2(1,g) by BChle0 and for the deactivation of O2(1,g) by the solvent come out to be kq= (1.4 ± 0.1) × 109 M,1 s,1 and k0= (18.5 ± 0.7) × 103 s,1, respectively. The absolute quantum yield of O2(1,g) sensitization by BChle monomers is 0.65 ± 0.15 in air-saturated acetone. In aqueous phase, the triplet lifetime of BChle aggregates in native or hexanol-perturbed chlorosomes shortens by more than two orders of magnitude when compared with the triplet lifetime of BChle monomers in 0.5% TX solution (a few hundreds of microseconds). Quenching by carotenoids (Car) makes only a minor contribution to the decay of BChle, in aggregates. Because O2(1,g) sensitization by BChle, could be detected neither in MGDG aggregates nor in chlorosomes (control as well as hexanol perturbed), it is concluded that (1) this process is highly likely when BChle is present as a monomer but not when it is tightly packed in artificial aggregates or in chlorosomes; and (2) Car, though vital for the baseplate BChla, are dispensable for BChle. [source]


    Growth and characterization of gallium oxide thin films by radiofrequency magnetron sputtering

    PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 8 2008
    P. Marie
    Abstract Undoped and Neodymium-doped gallium oxide (Ga2O3) thin films of about 500 nm thickness were successfully grown at different temperatures ranging from 100 up to 600 °C by radiofrequency magnetron sputtering. Post-annealing treatments were carried out at 900 °C and 1000 °C. The obtained films were (400) textured and a grain size of a few tens of nanometres was found. Optical and electrical characterizations led to a figure of merit of about 1.9 × 10,4. These films were successfully doped with Neodymium by a co-sputtering method. The photoluminescence experiments for the Nd-doped ,-Ga2O3 films clearly showed the rare-earth emitting signature. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    TEM characterization of VLS-grown ZnTe nanowires

    PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 12 2008
    H. Kirmse
    Abstract ZnTe nanowires were grown via a vapour-liquid-solid pro- cess. Nano-sized droplets of a gold-based eutectic act as catalysts. The comprehensive transmission electron microscopy studies reveal that the nanowires are single crystals with numerous stacking faults and twins. The dimension of the wires is several micrometers in length and a few tens of nanometers in diameter. At the sidewall of the nanowires additional nanocrystals of ZnO embedded in an amorphous layer are identified. The formation process of the nanowires can be understood as a two-step process. The first step is the one-dimensional growth along the wire axis by consuming all the material deposited near the droplet. In a second step, facets are formed due to lateral growth of the nanowire. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Characteristics of polyimide ultrafine fibers prepared through electrospinning

    POLYMER INTERNATIONAL, Issue 3 2003
    Changwoon Nah
    Abstract A novel route for making polyimide sub-micron fibers is described. The ultrafine fibers are prepared by electrospinning a poly(amic acid) solution, a precursor of polyimide, followed by thermal imidization. The fiber diameters, which are much smaller than conventionally spun fibers, range from a few tens of nanometers to several micrometers. A rectangular cross-section is observed in the case of sub-micron fibers with a cross-sectional dimension below ,500,nm. © 2003 Society of Chemical Industry [source]


    Metabolite profiling in rat urine by liquid chromatography/electrospray ion trap mass spectrometry.

    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 22 2003
    Application to the study of heavy metal toxicity
    This work reports the use of reverse-phase liquid chromatography coupled to electrospray ion trap (QIT) mass spectrometry for the analysis of the metabolome in rat urine. An injection of 20,,L of urine into the chromatographic system is followed by a slow gradient elution and mass spectrometric detection in the scanning mode from m/z 100,1000 in both positive and negative modes. Over a time scale of 90,min, 30 and 20 resolved peaks were observed in the positive and the negative modes, respectively, corresponding to the presence of a few hundred m/z ratios. By using a QIT analyzer, data-dependent tandem mass spectrometry of selected m/z ratios identified several compounds in rat urine and characterized various chemical families, including carboxylic acids, amines, sulfated compounds, glucuronides and glycosides, by the observation of characteristic fragment ions or neutral losses. The method has been applied to the investigation of the chronic toxicity of heavy metals in rat urine. A few tens of m/z ratios, differing in intensity more than threefold from control values, were observed in both positive and negative modes. The time variations for some selected ions suggest that LC/ESI-MS could allow selective characterization of biomarkers in response to specific toxic compounds. Copyright © 2003 John Wiley & Sons, Ltd. [source]


    The effect of clouds on the dynamical and chemical evolution of gas-rich dwarf galaxies

    ASTRONOMISCHE NACHRICHTEN, Issue 9-10 2009
    S. Recchi
    Abstract We study the effects of clouds on the dynamical and chemical evolution of gas-rich dwarf galaxies, in particular focusing on two model galaxies similar to IZw18 and NGC 1569. We consider both scenarios, clouds put at the beginning of the simulation and continuously created infalling ones. Due to dynamical processes and thermal evaporation, the clouds survive only a few tens of Myr, but during this time they act as an additional cooling agent and the internal energy ofcloudy models is typically reduced by 20,40% in comparison with models without clouds. The clouds delay the development of large-scale outflows, therefore helping to retain a larger amount of gas inside the galaxy. However, especially in models with continuous creation of infalling clouds, their bullet effect can pierce the expanding supershell and create holes through which the superbubble can vent freshly produced metals. Moreover, assuming a pristine chemical composition for the clouds, their interaction with the superbubble dilutes the gas, reducing the metallicity (by up to ,0.4 dex) with respect to the one attained by diffuse models (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    The iron emission line complex of MCG-5-23-16: the long XMMNewton look

    ASTRONOMISCHE NACHRICHTEN, Issue 10 2006
    V. Braito
    Abstract We present the results of the simultaneous XMM- Newton and Chandra observations of the bright Seyfert 1.9 galaxy MCG,5-23-16, which is one of the best known examples of a relativistically broadened iron K, line. We find that: a) the soft X-ray emission is likely to be dominated by photoionized gas, b) the complex iron emission line is best modelled with a narrow and a broad component with a FWHM ,44000 km/s. This latter component has an EW ,50 eV and its profile is well described with an emission line mainly originating from the accretion disk a few tens of gravitational radii from the central black hole and viewed with an inclination angle ,40°. We found evidence of a possible sporadic absorption line at ,7.7 keV which, if associated with Fe XXVI K, resonance absorption, is indicative of a possible high velocity (v , 0.1c) outflow. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    3D seismic technology: the geological ,Hubble'

    BASIN RESEARCH, Issue 1 2005
    Joe Cartwright
    The proliferation of three-dimensional (3D) seismic technology is one of the most exciting developments in the Earth Sciences over the past century. 3D reflection seismic data provide interpreters with the ability to map structures and stratigraphic features in 3D detail to a resolution of a few tens of metres over thousands of square kilometres. It is a geological ,Hubble', whose resolving power has already yielded some fascinating (and surprising) insights and will continue to provide a major stimulus for research into geological processes and products for many decades to come. Academic and other research institutions have a major role to play in the use of this data by exploiting the enormous volume of geological information contained in 3D seismic surveys. This paper reviews some of the recent advances in basin analysis made using the medium of 3D seismic data, focusing on the fields of structural and sedimentary geology, fluid,rock interactions and igneous geology. It is noted that the increased resolution of the 3D seismic method provided the essential catalyst necessary to stimulate novel observations and discover new geological structures such as mud diapir feeders, km-long gas blow-out pipes, giant pockmarks and sandstone intrusions, and to capture the spatial variability of diagenetic fronts. The UKs first impact crater was also discovered using 3D seismic data. The potential for future developments in this field of geophysical interpretation is considerable, and we anticipate that new discoveries will be made in many years to come. [source]


    Why microalgal biofuels won't save the internal combustion machine

    BIOFUELS, BIOPRODUCTS AND BIOREFINING, Issue 1 2010
    Jan B. van Beilen
    Abstract Proponents of microalgae biofuel technologies often claim that the world demand of liquid fuels, about 5 trillion liters per year, could be supplied by microalgae cultivated on only a few tens of millions of hectares. This perspective reviews this subject and points out that such projections are greatly exaggerated, because (1) the productivities achieved in large-scale commercial microalgae production systems, operated year-round, do not surpass those of irrigated tropical crops; (2) cultivating, harvesting and processing microalgae solely for the production of biofuels is simply too expensive using current or prospective technology; and (3) currently available (limited) data suggest that the energy balance of algal biofuels is very poor. Thus, microalgal biofuels are no panacea for depleting oil or global warming, and are unlikely to save the internal combustion machine. Copyright © 2009 Society of Chemical Industry and John Wiley & Sons, Ltd [source]


    Effect of PCBM Concentration on Photoluminescence Properties of Composite MEH-PPV/PCBM Nanoparticles Investigated by a Franck,Condon Analysis of Single-Particle Emission Spectra

    CHEMPHYSCHEM, Issue 14 2009
    Daeri Tenery Dr.
    Abstract The emission of composite conjugated polymer (MEH-PPV)/fullerene (PCBM) nanoparticles is investigated by single particle spectroscopy (SPS), and changes in vibronic structure with nanoparticle composition are evaluated by means of a detailed Franck,Condon analysis. Consistent with previous reports we find that the emission spectra can be modeled as the superposition of two types of emitters, one with aggregate character and one with molecular character. Major findings from the fitting of the SPS data to a Franck,Condon model are that 1) the occurrence of each of the two types of emitters changes with nanoparticle composition to the point that no aggregate emitters are detected (at 50 wt,% PCBM), 2) at the highest PCBM doping levels (75 wt,% PCBM) aggregate emitters reappear due to nanoscale phase separation in the composite nanoparticles, 3) the molecular emitters show small Huang,Rhys factors that increase with PCBM doping, indicative of extensive delocalization and exciton migration that is reduced by the disorder introduced in the polymer material by PCBM doping and 4) the aggregate emitters show large Huang,Rhys factors, indicative of the localized nature of these energy trap sites, with a broad distribution of values of these Huang,Rhys factors. The latter observation suggests a broad heterogeneous distribution of aggregate morphologies in blended conducting polymer materials, which can be attributed to variations in polymer chain folding and stacking at the aggregate sites. The reported results obtained by the SPS approach show how blending conjugated polymers with fullerenes at various doping levels induces changes in interchain interactions and aggregate site density even at length scales below a few tens of nanometers that affect conjugated polymer material properties, an observation that has gone unnoticed in bulk studies of blended conjugated polymer films. [source]


    Selectively Deposited Silver Coatings on Gold-Capped Silicon Nanowires for Surface-Enhanced Raman Spectroscopy

    CHEMPHYSCHEM, Issue 8 2009
    M. Becker Dr.
    Abstract Gold caps on silicon nanowires are selectively coated with silver by autometallography (electroless deposition). Changing the conditions of silver deposition, a variety of different coating morphologies can be produced (see figure). The different silver coating morphologies are investigated in terms of their capabilities for surface enhanced Raman scattering (SERS) experiments. Gold caps on silicon nanowires are hemispherical and only a few tens of nanometers in diameter when grown from metal catalysts by the vapor-liquid-solid growth mechanism using chemical vapor deposition. These gold caps are capable of enhancing Raman signals based on the surface-enhanced Raman scattering effect. The Raman signal can be enhanced even further (by at least one order of magnitude) when silver is selectively deposited onto these gold caps by autometallography (electroless deposition). By changing the silver deposition conditions, different coating morphologies can be realized on the gold caps that range from very thin, smooth layers to uneven and extremely rough coatings. The SERS signal enhancement and the spatial homogeneity of the achievable enhancement are compared for the different silver coatings using a model dye molecule. [source]


    First Direct Observation of the Higher Triplet Excited States of Substituted Oligothiophenes by Two-Color Two-Laser Flash Photolysis

    CHEMPHYSCHEM, Issue 8 2004
    Mamoru Fujitsuka Prof. Dr.
    The higher triplet excited states (Tn) of oligothiophenes [trimer (3T), tetramer (4T), and pentamer (5T)] were directly observed for the first time during two-color two-laser flash photolysis employing a picosecond laser. The lifetimes of the Tn states of the oligomers were a few tens of picoseconds. The internal conversion between T2,T1 is the rate-determining step for the oligothiophenes (see picture). [source]