Home About us Contact | |||
Fetal Period (fetal + period)
Selected AbstractsPrenatal predictors of infant temperamentDEVELOPMENTAL PSYCHOBIOLOGY, Issue 5 2007Elizabeth A. Werner Abstract Emerging data suggest that prenatal factors influence children's temperament. In 50 dyads, we examined fetal heart rate (FHR) activity and women's antenatal psychiatric illness as predictors of infant temperament at 4 months (response to novelty and the Infant Behavior Checklist). FHR change during maternal challenge was positively associated with observed infant motor reactivity to novelty (p,=,.02). The odds of being classified as high versus low motor among fetuses who had an increase in FHR during maternal stress was 11 times those who had a decrease in FHR (p,=,.0006). Antenatal psychiatric diagnosis was associated with an almost fourfold greater odds of having a high cry reactivity classification (p,=,.03). There also were modest associations between baseline FHR and maternal reports of infant temperament and between observed temperament and that based on mothers' reports. All of the infant results were found independent of the influence of women's postnatal anxiety. These data indicate that physiological markers of individual differences in infant temperament are identifiable in the fetal period, and possibly shaped by the prenatal environment. © 2007 Wiley Periodicals, Inc. Dev Psychobiol 49: 474-484, 2007. [source] Influence for testicular development and histological peculiarity in the testes of flutamide-induced cryptorchid rat modelINTERNATIONAL JOURNAL OF UROLOGY, Issue 1 2007Kentaro Mizuno Objectives: To investigate influence for the testicular development and to assess the usefulness as an animal model, cryptorchid rats were induced by exposure to flutamide during the fetal period and their testes examined histologically. Methods: Flutamide was injected into the abdomen of pregnant rats for 7 days from the 14th to 20th day of gestation. The male offspring in which cryptorchidism was observed at 28 days after birth were defined as the model rats. They were divided into four groups by dosage of flutamide (2.5 mg, 5 mg, 7.5 mg, 15 mg per day), and their testicular weight, spermatogenesis (modified Johnsen score), and germ cell apoptosis were examined histochemically at 10 weeks after birth. Results: The incidence of cryptorchidism including both unilateral and bilateral in the 2.5, 5, 7.5 and 15-mg flutamide groups was 58.3%, 81.9%, 93.6% and 91.0%, respectively. In the model rats, the undescended testes were located at the caudal end of the abdominal cavity, and these testes weighed less than the contra-descended testes in each group. Histologically, apoptotic cells were markedly increased, the seminiferous tubules were degenerated and disturbance of spermatid differentiation was observed in the undescended testes compared with the normal or contra-lateral descended testes. Conclusions: We found out that the incidence of undescended testes increased in a flutamide dose-dependent manner. The findings of histological examination were independent of the administrated dose of flutamide and it is suggested that exposure of the testes to abdominal temperature causes spermatogenic arrest with germ cell apoptosis. The present animal model indicates high incidence of above 90%, has no surgical stress and dose not require special techniques. We believe that the present model is a useful tool for the understanding of pathogenesis and treatment of cryptorchidism and further biological research into spermatogenesis. [source] Development of axonal pathways in the human fetal fronto-limbic brain: histochemical characterization and diffusion tensor imagingJOURNAL OF ANATOMY, Issue 4 2010Lana Vasung Abstract The development of cortical axonal pathways in the human brain begins during the transition between the embryonic and fetal period, happens in a series of sequential events, and leads to the establishment of major long trajectories by the neonatal period. We have correlated histochemical markers (acetylcholinesterase (AChE) histochemistry, antibody against synaptic protein SNAP-25 (SNAP-25-immunoreactivity) and neurofilament 200) with the diffusion tensor imaging (DTI) database in order to make a reconstruction of the origin, growth pattern and termination of the pathways in the period between 8 and 34 postconceptual weeks (PCW). Histological sections revealed that the initial outgrowth and formation of joined trajectories of subcortico-frontal pathways (external capsule, cerebral stalk,internal capsule) and limbic bundles (fornix, stria terminalis, amygdaloid radiation) occur by 10 PCW. As early as 11 PCW, major afferent fibers invade the corticostriatal junction. At 13,14 PCW, axonal pathways from the thalamus and basal forebrain approach the deep moiety of the cortical plate, causing the first lamination. The period between 15 and 18 PCW is dominated by elaboration of the periventricular crossroads, sagittal strata and spread of fibers in the subplate and marginal zone. Tracing of fibers in the subplate with DTI is unsuccessful due to the isotropy of this zone. Penetration of the cortical plate occurs after 24,26 PCW. In conclusion, frontal axonal pathways form the periventricular crossroads, sagittal strata and ,waiting' compartments during the path-finding and penetration of the cortical plate. Histochemistry is advantageous in the demonstration of a growth pattern, whereas DTI is unique for demonstrating axonal trajectories. The complexity of fibers is the biological substrate of selective vulnerability of the fetal white matter. [source] Prenatal and early postnatal morphogenesis and growth of human laryngotracheal structuresJOURNAL OF ANATOMY, Issue 2 2008Pierre Fayoux Abstract Advances in neonatal medicine have resulted in increased care of fetal and neonatal airways. These advances have required an exhaustive knowledge of fetal airway anatomy and development. The aim of this study was to determine the anatomical development of laryngotracheal structures during the fetal and immediate postnatal period and to correlate these observations with other fetal biometric parameters to estimate developmental particularities of the fetal airway. An anatomical prospective study was based on examination of larynx and trachea from 300 routine autopsies of fetuses and infants, free of malformation and never intubated. Anatomical measurements of cricoid cartilage, thyroid cartilage, glottis, arytenoid cartilage and trachea were performed using a precision calliper and precision divider. Statistical analysis was performed to represent the growth of anatomical structures and to evaluate the correlation with biometric data. Raw data and 10th and 90th percentile curves were fitted satisfactorily with a linear model for gestational age. A linear relationship between laryngotracheal measurement and body weight and height was observed except for glottis length, interarytenoid distance and anterior cricoid height. The diameter of the cricoid lumen was significantly less than that of the trachea and glottis lumen. A sexual dysmorphism was noted for thyroid cartilage measurements and interarytenoid distance, with measurements significantly smaller in females. This study reports the anatomical development of normal laryngotracheal structures during the fetal period. Despite the fact that this study was performed during postmortem examination, these observations can be useful to develop criteria, materials and surgical procedures adapted to fetal and neonatal airways as well as for the purposes of early diagnosis and management of laryngotracheal malformations. [source] Immunohistochemical distribution of regulatory peptides in the human fetal adenohypophysisJOURNAL OF ANATOMY, Issue 6 2008R. Reyes Abstract We have studied here the cellular distribution of several regulatory peptides in hormone-producing cells of the human pituitary during the fetal period. Immunohistochemistry was used to show the expression of several regulatory peptides, namely Angiotensin-II, Neurotensin and Galanin, at successive gestational stages and their co-localization with hormones in the human fetal adenohypophysis. Somatotrophs, gonadotrophs and thyrotrophs were differentiated earliest. At gestational week 9, Angiotensin-II immunoreactivity was co-localized only with growth hormone immunoreactivity in somatotrophs, one of the first hormone-producing cells to differentiate. This co-localization remained until week 37. Neurotensin immunoreactivity was present in gonadotrophs and thyrotrophs in week 23, after FSH and TSH hormone differentiation. Galanin immunoreactivity was present in all hormone-producing cell types except corticotrophs. The different pro-opiomelanocortin-derived peptides were detected at different stages of gestation and adrenocorticotrophic hormone immunoreaction was the last to be detected. Our results show an interesting relationship between regulatory peptides and hormones during human fetal development, which could imply that these peptides play a regulatory role in the development of pituitary function. [source] Morphology of the mammalian vestibulo-ocular reflex: The spatial arrangement of the human fetal semicircular canals and extraocular musclesJOURNAL OF MORPHOLOGY, Issue 10 2007Philip G. Cox Abstract The vestibulo-ocular reflex is the system of compensatory ocular movements in response to stimulation of the kinetic labyrinth seen in all vertebrates. It allows maintenance of a stable gaze even when the head is moving. Perhaps the simplest influence on the VOR is the spatial orientation of the planes of the semicircular canals relative to the extraocular muscles. It is hypothesized that the extraocular muscles are in parallel alignment with their corresponding semicircular canals in order to reduce the amount of neural processing needed and hence keep reflex times to a minimum. However, despite its obvious importance, little is known of this spatial arrangement. Moreover, nothing is known about any ontogenetic changes in the relative orientations of the extraocular muscles and semicircular canals. The morphologies of fetal and adult specimens of Homo sapiens were examined using magnetic resonance (MR) images. Three-dimensional co-ordinate data were taken from the images and used to calculate vector equations of the extraocular muscles and planes of best fit for the semicircular canals. The relative orientations of the muscles and canals were then calculated from the vectors and planes. It was shown that there are significant correlations between both the anterior and lateral semicircular canals and their corresponding extraocular muscles during ontogeny. In the case of the lateral canal with the medial rectus, the lateral canal with the lateral rectus, and the anterior canal with the inferior oblique, the trend is towards, though never reaching, alignment, whereas the anterior canal and the superior rectus muscle move out of alignment as age increases. Furthermore, it was noted that none of the six muscle-canal pairs is in perfect alignment, either during ontogeny or in adulthood. It was also shown that the three semicircular canals are not precisely orthogonal, but that the anterior and posterior canals form an angle of about 85°, while the anterior and lateral canals diverge by ,100°. Overall, it was shown that there is significant reorientation of the extraocular muscles and semicircular canals during ontogeny, but that, in most cases, there is little realignment beyond the fetal period. J. Morphol., 2007. © 2007 Wiley-Liss, Inc. [source] Gestational stage sensitivity to ultrasound effect on postnatal growth and development of miceBIRTH DEFECTS RESEARCH, Issue 8 2006Suresh Rao Abstract BACKGROUND: An experiment was conducted to find out whether ultrasound exposure leads to changes in postnatal growth and development in the mouse. METHODS: A total of 15 pregnant Swiss albino mice were exposed to diagnostic levels of ultrasound (3.5 MHz, 65 mW/cm2, ISPTP = 1 mW/cm2 Intensity(Spatial Peak-Temporal Peak), ISATA = 240 mW/cm2 Intensity(Spatial Average-Temporal Average)) for 30 min for a single day between days 10 and 18 of gestation (GD 10,18). Virgin female mice were placed with same age group males for mating in the ratio 2 females : 1 male and examined the next morning for the presence of vaginal plug, a sign of successful copulation. The females with vaginal plugs were separated and labeled as 0-day pregnant. Maternal vaginal temperature was also measured. A sham exposed control group of 15 pregnant mice was maintained for comparison. All exposed as well as control animals were left to complete gestation and parturition. Their offspring were used in our further studies. They were monitored during early postnatal life for standard developmental markers, postnatal mortality, body weight, body length, head length, and head width, and growth restriction was recorded up to 6 weeks of age. RESULTS: An exposure to ultrasound induced nonsignificant deviations in the maternal vaginal temperature or developmental markers. Significant low birth weight was observed in the present study, after exposure at GD 11, 12, 14, and 16. However, 14 and 16 days postcoitus during the fetal period appears to be the most sensitive to the ultrasound effect, in view of the number of different effects as well as severity of most of the observed effects when exposed on these gestation days. CONCLUSIONS: The results indicate that diagnostic ultrasound can induce harmful effects on mouse growth and development when given at certain critical periods of gestation. Birth Defects Research (Part A) 76:602,608, 2006. © 2006 Wiley-Liss, Inc. [source] Anatomical development of urinary bladder during the fetal periodCLINICAL ANATOMY, Issue 7 2008O. Sulak Abstract The aim of this study was to determine the development, location, and size of the urinary bladder during the fetal period. The study was performed on 149 human fetuses between 9 and 40 weeks of gestation. The location of the urinary bladder with respect to transverse plane between the highest point of pubic symphysis and the sacral promontory and median sagittal plane was first determined. The dimensions and the angle of the urinary bladder were measured, and bladder shapes were determined. In addition, the edges of the vesical trigone were measured. There was no significant difference between sexes for any of the parameters (P > 0.05). A significant correlation was observed between all parameters and gestational age (P < 0.001). The urinary bladder was located above the transverse plane in most of the cases (83%) and in the median sagittal plane in every case. It was determined that the angle of bladder did not change and the mean value of the angle was 151° during the fetal period. Bladder was categorized into four different shapes (ellipsoid, round, cuboid, and triangular), and the most common shape found during the fetal period was cuboid. The vesical trigone was an isosceles triangle during the fetal period. The new data provided by this study will enable evaluation of the development of the fetal urinary bladder, and should be useful in several fields such as anatomy, fetopathology, medical imaging, obstetrics, and pediatric urology. Clin. Anat. 21:683,690, 2008. © 2008 Wiley-Liss, Inc. [source] Development of swallowing and feeding: Prenatal through first year of lifeDEVELOPMENTAL DISABILITIES RESEARCH REVIEW, Issue 2 2008Amy L. Delaney Abstract The development of feeding and swallowing involves a highly complex set of interactions that begin in embryologic and fetal periods and continue through infancy and early childhood. This article will focus on swallowing and feeding development in infants who are developing normally with a review of some aspects of prenatal development that provide a basis for in utero sucking and swallowing. Non-nutritive sucking in healthy preterm infants, nipple feeding in preterm and term infants, and selected processes of continued development of oral skills for feeding throughout the first year of life will be discussed. Advances in research have provided new information in our understanding of the neurophysiology related to swallowing, premature infants' sucking and swallowing patterns, and changes in patterns from preterm to near term to term infants. Oral skill development as texture changes are made throughout the second half of the first year of life is an under studied phenomenon. Knowledge of normal developmental progression is essential for professionals to appreciate differences from normal in infants and children with feeding and swallowing disorders. Additional research of infants and children who demonstrate overall typical development in oral skills for feeding is encouraged and will provide helpful reference points in increasing understanding of children who exhibit differences from typical development. It is hoped that new technology will provide noninvasive means of delineating all phases of sucking and swallowing from prenatal through infancy. Further related topics in other articles of this issue provide a comprehensive review of factors influencing oral intake, growth, nutrition, and neurodevelopmental status of children. © 2008 Wiley-Liss, Inc. Dev Disabil Res Rev 2008;14:105,117. [source] Cloning Adult Farm Animals: A Review of the Possibilities and Problems Associated with Somatic Cell Nuclear TransferAMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 2 2003J. L. Edwards In 1997, Wilmut et al. announced the birth of Dolly, the first ever clone of an adult animal. To date, adult sheep, goats, cattle, mice, pigs, cats and rabbits have been cloned using somatic cell nuclear transfer. The ultimate challenge of cloning procedures is to reprogram the somatic cell nucleus for development of the early embryo. The cell type of choice for reprogramming the somatic nucleus is an enucleated oocyte. Given that somatic cells are easily obtained from adult animals, cultured in the laboratory and then genetically modified, cloning procedures are ideal for introducing specific genetic modifications in farm animals. Genetic modification of farm animals provides a means of studying genes involved in a variety of biological systems and disease processes. Moreover, genetically modified farm animals have created a new form of ,pharming' whereby farm animals serve as bioreactors for production of pharmaceuticals or organ donors. A major limitation of cloning procedures is the extreme inefficiency for producing live offspring. Dolly was the only live offspring produced after 277 attempts. Similar inefficiencies for cloning adult animals of other species have been described by others. Many factors related to cloning procedures and culture environment contribute to the death of clones, both in the embryonic and fetal periods as well as during neonatal life. Extreme inefficiencies of this magnitude, along with the fact that death of the surrogate may occur, continue to raise great concerns with cloning humans. [source] |