Fetal Mice (fetal + mouse)

Distribution by Scientific Domains


Selected Abstracts


The first intestinal motility patterns in fetal mice are not mediated by neurons or interstitial cells of Cajal

THE JOURNAL OF PHYSIOLOGY, Issue 7 2010
Rachael R. Roberts
In mature animals, neurons and interstitial cells of Cajal (ICC) are essential for organized intestinal motility. We investigated motility patterns, and the roles of neurons and myenteric ICC (ICC-MP), in the duodenum and colon of developing mice in vitro. Spatiotemporal mapping revealed regular contractions that propagated in both directions from embryonic day (E)13.5 in the duodenum and E14.5 in the colon. The propagating contractions, which we termed ripples, were unaffected by tetrodotoxin and were present in the intestine of embryonic Ret null mutant mice, which lack enteric neurons. Neurally mediated motility patterns were first observed in the duodenum at E18.5. To examine the possible role of ICC-MP, three approaches were used. First, intracellular recordings from the circular muscle of the duodenum did not detect slow wave activity at E16.5, but regular slow waves were observed in some preparations of E18.5 duodenum. Second, spatiotemporal mapping revealed ripples in the duodenum of E13.5 and E16.5 W/Wv embryos, which lack KIT+ ICC-MP and slow waves. Third, KIT-immunoreactive cells with the morphology of ICC-MP were first observed at E18.5. Hence, ripples do not appear to be mediated by ICC-MP and must be myogenic. Ripples in the duodenum and colon were abolished by cobalt chloride (1 mm). The L-type Ca2+ channel antagonist nicardipine (2.5 ,m) abolished ripples in the duodenum and reduced their frequency and size in the colon. Our findings demonstrate that prominent propagating contractions (ripples) are present in the duodenum and colon of fetal mice. Ripples are not mediated by neurons or ICC-MP, but entry of extracellular Ca2+ through L-type Ca2+ channels is essential. Thus, during development of the intestine, the first motor patterns to develop are myogenic. [source]


Aortic and ventricular dilation and myocardial reduction in gestation day 17 ICR mouse fetuses of diabetic mothers

BIRTH DEFECTS RESEARCH, Issue 6 2007
J. Claudio Gutierrez
Abstract BACKGROUND: Maternal diabetes mellitus is associated with increased fetal teratogenesis, including cardiovascular defects. Information regarding cardiovascular changes in late-gestation fetal mice, related to maternal hyperglycemia, is not present in the literature. METHODS: Late-gestation fetal heart and great vessel morphology were analyzed in fetuses from control and diabetic mice. Female ICR mice were injected with streptozocin (200 mg/kg IP) prior to mating to induce diabetes (n = 8). Nonhyperglycemic females were used as controls (n = 8). At day 17 of gestation, females were euthanized and one fetus was arbitrarily selected per litter to analyze the heart and great vessels. Six additional fetuses from different litters, showing external malformations (spina bifida and/or exencephaly), were also evaluated from the diabetic group. Fetal thoraxes were processed using routine histopathologic techniques, and 7-,m transversal sections were stained with hematoxylin-eosin. Digital images of sections were made and analyzed using NIH Image J software to compare regional cardiac development. Student's t tests for means were performed to determine differences between groups (p < .05). RESULTS: Maternal hyperglycemia caused a dilation of late-gestation fetal ventricular chambers, a reduction of total ventricular myocardial area, and an increase in transversal ascending thoracic aortic area. Three of six fetuses that displayed external malformations showed an overt cardiac defect, beyond the ventricular and myocardial changes. CONCLUSIONS: Maternal hyperglycemia altered morphology of the late-gestation fetal mouse heart. Postnatal persistence or consequences of late-gestation heart chamber dilation and myocardial reduction are not yet known. Birth Defects Research (Part A) 2007. © 2007 Wiley-Liss, [source]


GATA-4 is required for sex steroidogenic cell development in the fetal mouse

DEVELOPMENTAL DYNAMICS, Issue 1 2007
Malgorzata Bielinska
Abstract The transcription factor GATA-4 is expressed in Sertoli cells, steroidogenic Leydig cells, and other testicular somatic cells. Previous studies have established that interaction between GATA-4 and its cofactor FOG-2 is necessary for proper Sry expression and all subsequent steps in testicular organogenesis, including testis cord formation and differentiation of both Sertoli and fetal Leydig cells. Since fetal Leydig cell differentiation depends on Sertoli cell,derived factors, it has remained unclear whether GATA-4 has a cell autonomous role in Leydig cell development. We used two experimental systems to explore the role of GATA-4 in the ontogeny of testicular steroidogenic cells. First, chimeric mice were generated by injection of Gata4,/, ES cells into Rosa26 blastocysts. Analysis of the resultant chimeras showed that in developing testis Gata4,/, cells can contribute to fetal germ cells and interstitial fibroblasts but not fetal Leydig cells. Second, wild-type or Gata4,/, ES cells were injected into the flanks of intact or gonadectomized nude mice and the resultant teratomas examined for expression of steroidogenic markers. Wild-type but not Gata4,/, ES cells were capable of differentiating into gonadal-type steroidogenic lineages in teratomas grown in gonadectomized mice. In chimeric teratomas derived from mixtures of GFP-tagged Gata4+/+ ES cells and unlabeled Gata4,/, ES cells, sex steroidogenic cell differentiation was restricted to GFP-expressing cells. Collectively these data suggest that GATA-4 plays an integral role in the development of testicular steroidogenic cells. Developmental Dynamics 236:203,213, 2007. © 2006 Wiley-Liss, Inc. [source]