Fertilizer Treatments (fertilizer + treatment)

Distribution by Scientific Domains


Selected Abstracts


Effect of long-term combined nitrogen and phosphorus fertilizer application on 13C CPMAS NMR spectra of humin in a Typic Hapludoll of northeast China

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 6 2009
J. J. Zhang
Summary Because of its insolubility, heterogeneity and structural complexity, humin is the least understood among the three fractions of soil humic substances. This research aimed to evaluate the long-term effect of combined nitrogen and phosphorus (NP) fertilizer addition on the chemical structure of humin under maize (Zea mays L.) monoculture in a Typic Hapludoll of northeast China. Soil samples were collected 12 and 25 years after the initiation of the fertilizer treatment. Soil humin was isolated using NaOH-Na4P2O7 extraction to remove humic and fulvic acids, which was followed by HF-HCl treatment to remove most of the inorganic minerals. Solid-state 13C cross-polarization magic angle spinning nuclear magnetic resonance (13C CPMAS NMR) spectroscopy was used to characterize the chemical structure of the humin isolates. Results showed that the organic carbon (C) content of humin increased after NP fertilizer addition, compared with a no-fertilizer (CK) treatment. 13C CPMAS NMR indicated that O-alkyl C and aromatic C of humin decreased, while alkyl C and the ratios of alkyl C/O-alkyl C, aliphatic C/aromatic C and hydrophobic C/hydrophilic C all increased in the NP fertilizer treatment. The long-term application of NP fertilizer changed the molecular structure of soil humin to be more alkyl and hydrophobic, and was thus beneficial to the sequestration and stability of organic C in soil. [source]


Soil organic carbon contents in long-term experimental grassland plots in the UK (Palace Leas and Park Grass) have not changed consistently in recent decades

GLOBAL CHANGE BIOLOGY, Issue 7 2009
D. W. HOPKINS
Abstract A recent report of widespread declines in soil organic C (SOC) in the UK over the 10,25 years until the early 2000s has focussed attention on the importance of resampling previously characterized sites to assess long-term trends in SOC contents and the importance of soils as a potentially volatile and globally significant reservoir of terrestrial C. We have used two sets of long-term experimental plots which have been under constant and known management for over a century and for which historical data exist that allow comparison over recent decades to determine what, if any, changes in SOC content have occurred. The plots used are the Palace Leas (PL) Meadow Hay Plots in north-east England (UK) established in 1897, and from the Park Grass (PG) Continuous Hay experiment established in 1856 at Rothamsted in south-east England. Collectively, these plots represent the only grassland sites in the UK under long-term management where changes in SOC over several decades can be assessed, and are probably unique in the world. The plots have received different manure and fertilizer treatment and have been under known management for at least 100 years. In 1982, total SOC contents were determined for the 0,27 cm layer of six of the PL plots using measurements of SOC concentrations, bulk density and soil depth. In 2006, the same six PL plots were resampled and SOC contents determined again. Four of the plots showed no net change in SOC content, but two plots showed net loss of SOC of 15% and 17% (amounting to decreases of 18 and 15 t C ha,1) since 1982. However, these differences in total SOC content were in a similar range to the variations in bulk density (6,31%) with changing soil water content. In 1959, the soil masses and SOC concentrations to 23 cm depth were measured on six PG plots with fertilizer and manure treatments corresponding closely with those measured on PL. In 2002, the SOC concentrations on the same plots were measured again. On three of the PG plots, SOC concentrations had declined by 2,10%, but in the other three it had increased by 4,8% between 1959 and 2002. If it is assumed that the soil bulk density had not changed over this period, the losses of SOC from the top soils ranged range from 10 to 3 t C ha,1, while the gains ranged from 4 to 7 t C ha,1. When the differences with time in SOC contents for the six PL and the six PG plots were examined using paired t -tests, that is, regarding the plots as two sets of six replicate permanent grasslands, there were no significant differences between 1982 and 2006 for the PL plots or between 1959 and 2002 for the PG plots. Thus, these independent observations on similar plots at PL and PG indicate there has been no consistent decrease in SOC stocks in surface soils under old, permanent grassland in England in recent decades, even though meteorological records for both sites indicate significant warming of the soil and air between 1980 and 2000. Because the potential influences of changes in management or land use have been definitively excluded, and measured rather than derived bulk densities have been used to convert from SOC concentrations to SOC amounts, our observations question whether for permanent grassland in England, losses in SOC in recent decades reported elsewhere can be attributed to widespread environmental change. [source]


Impact of Phosphorus from Dairy Manure and Commercial Fertilizer on Perennial Grass Forage Production

JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 6 2003
E. A. Mikhailova
Abstract Increased recovery and recycling of manure phosphorus (P) by crops on dairy farms is needed to minimize environmental problems. The main objective of this study was to compare P utilization by orchardgrass (Dactylis glomerata L.) and tall fescue (Festuca arundinaceae Schreb.) from dairy manure or inorganic fertilizer. The study was conducted from 1994 to 2000 at the Cornell University Baker Farm, Willsboro, NY, on a somewhat poorly drained Kingsbury clay (very,fine, illitic, mesic Aeric Epiaqualfs). The design was a split-plot in a randomized complete block with two manure rates (16 800 and 33 600 kg ha,1) and one nitrogen (N) fertilizer rate (84 kg N ha,1 at spring greenup and 56 kg N ha,1 prior to each regrowth harvest) as the main plots and grass species as subplots replicated six times. Fertilizer P [Ca(H2PO4)2] was applied to the fertilizer treatment in 1995 and 1996 at 11 kg P ha,1 year,1. Orchardgrass P removal averaged 21 % higher than tall fescue P removal for the spring harvest, but orchardgrass averaged 24 % lower P removal than tall fescue removal for all regrowth harvests from 1995,99. Phosphorus herbage concentration in the fertilizer treatment was in the range of 1.9,2.7 g P kg,1 compared with 2.2,5.3 g P kg,1 in the manure treatments. Seasonal P removal ranged from as low as 9.2 kg P ha,1 to as high as 48.5 kg P ha,1. Morgan extractable soil P in the top 0,0.20 m remained high through 1999, with 29.1 kg P ha,1 at the highest manure rate in tall fescue compared with 8.4 kg P ha,1 measured in 1993 prior to the experiment. In 2000, soil P at the highest manure rate in tall fescue dropped to 10.1 kg P ha,1, following cessation of manure application in 1998. Intensively managed harvested orchardgrass and tall fescue have the potential to remove large quantities of manure P. [source]


Organic versus conventional management in an apple orchard: effects of fertilization and tree-row management on ground-dwelling predaceous arthropods

AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 2 2009
M. Miñarro
Abstract 1,Organic and conventional management of apple orchards may have a different effect on arthropod communities. 2,We conducted a 3-year study to assess the effect of two strategies of fertilizer treatment (organic versus chemical) and three tree-row management systems (straw mulching, tillage and herbicide) on activity-density and biodiversity of epigeic predators. Ground beetles (Carabidae), rove beetles (Staphylinidae), ants (Formicidae) and spiders (Araneae) were sampled monthly with pitfall traps in the same apple orchard during 2003, 2004 and 2005. 3,A total of 4978 individuals were collected. Carabids (56.8% of the total catches) were the most abundant taxonomic group, followed by spiders (20.7%), ants (14.8%) and rove beetles (7.7%). Tree-row management had a greater influence on predator catches than fertilizer treatment. Total predator catches were lower under the mulch. Mulching also reduced carabid abundance, but increased staphylinid catches. 4,Tree row management also had a significant effect on biodiversity parameters. Species richness did not significantly differ among treatments for ants, spiders or the total catches, but was higher on herbicide-treated plots for carabids and on mulched plots for staphylinids. Shannon,Wiener's diversity index was significantly greater in the mulched and herbicide treated plots for total predators and carabids. For staphylinids, this index was significantly greater on the mulched plots. Fertilizer application strategy only influenced the species richness of rove beetles, which was greater in the chemically-treated plots. 5,The results showed that a change from conventional to organic fertilizer treatment of apple trees may be performed without differential effects on predator activity-density or biodiversity. However, a change from herbicide treatment to mulching or mechanical weed control may be significant, depending on the taxonomic group. [source]


Nutrient versus pollination limitation in Platanthera bifolia and Dactylorhiza incarnata (Orchidaceae)

OIKOS, Issue 2 2000
Elisa Mattila
Availability of resources and pollination services have been demonstrated to have impact on reproductive success in some orchid species, but to our knowledge no studies have examined the effects of nutrient application and pollination limitation in the same experiment. In this study, factors limiting reproductive success were studied with two terrestrial orchid species in Central Finland during 1996 and 1997. In a field experiment using a factorial design, plants of nectar-producing Platanthera bifolia and nectarless Dactylorhiza incarnata were treated with nutrient application and hand-pollination. Inflorescence size was considered as an indicator of attractiveness to pollinators as well as of the general condition of the plant. In 1996, fertilizer treatment increased relative capsule production in P. bifolia plants with small inflorescences, indicating poorer store of resources in the underground corm and dependence on nutrient availability during capsule maturation, which was not found in large plants. Hand-pollination and large inflorescence size in P. bifolia did not affect capsule initiation, but increased the proportion of mature capsules. P. bifolia may thus be regarded as both resource- and pollination-limited within a year. Pollination success was observed to be the only factor limiting reproduction of the nectarless D. incarnata within a year, because hand-pollination increased capsule production, and there were no significant effects of fertilizer treatment or inflorescence size in 1996. Capsule production in 1996 did not affect the probability of P. bifolia flowering in the following year, while high capsule production decreased the subsequent probability of flowering in D. incarnata. Species with different pollination strategies differed in the use of resources. The nectar-producing P. bifolia had a lower fruit/flower ratio than the nectarless D. incarnata, also after hand-pollination. [source]


Amino acid 15N in long-term bare fallow soils: influence of annual N fertilizer and manure applications

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 4 2008
R. Bol
Summary Long-term dynamics of amino acids (AAs), from a bare fallow soil experiment (established in 1928 at INRA-Versailles, France), were examined in unamended control (Con) plots and plots treated with ammonium sulphate (Amsul), ammonium nitrate (Amnit), sodium nitrate (Nanit) or with animal manure (Man). Topsoil (0,25 cm) from 1929, 1963 and 1997 was analysed for C, N and 15N content and distribution of 18 amino acids recovered after acid hydrolysis with 6 m HCl. With time, soil N, C and AA content were reduced in Con, Amsul, Amnit and Nanit, but increased in Man. However, the absolute N loss was 3,11 times larger in Man than Nanit, Amsul, Amnit and Con, due to the much higher N annual inputs applied to Man. From 1929 to 1997 in Con, Amsul, Amnit and Nanit the whole soil and non-hydrolysable-N pool ,15N increased associated with the loss of N (indicative of Rayleigh 15N/14N fractionation). No ,15N change from 1929 to 1997 was found in the hydrolysable AA-N (HAN) pool. Fertilizer N inputs aided stabilization of soil AA-N, as AA half-life in the mineral N fertilizer treatments increased from 34 years in 1963 to 50 years in 1997. The ,15N values of alanine and leucine reflected both source input and 15N/14N fractionation effects in soils. The ,15N increase of ornithine (,6,) was similar to the whole soil. The ,15N change of phenylalanine in Con (decrease of 7,) was related to its proportional loss since 1929, whereas for Amsul, Amnit, Nanit and Man it was associated with isotope effects caused by the fertilizer inputs. However, the soil ,15N value of most individual amino acids (IAAs) did not significantly change over nearly 70 years, even with mineral or organic N inputs. We conclude for these bare fallow systems that: (i) ,15N changes in the whole soil and non-hydrolysable AA pool were solely driven by microbial processes and not by the nature of fertilizer inputs, and (ii) without plant inputs, the ,15N of the HAN pool and (most) IAAs may reflect the influence of plant,soil interactions from the previous (arable cropping) rather than present (fallow) land use on these soil ,15N values. [source]


PHENOTYPIC PLASTICITY OF HERMAPHRODITE SEX ALLOCATION PROMOTES THE EVOLUTION OF SEPARATE SEXES: AN EXPERIMENTAL TEST OF THE SEX-DIFFERENTIAL PLASTICITY HYPOTHESIS USING SAGITTARIA LATIFOLIA (ALISMATACEAE)

EVOLUTION, Issue 4 2008
Marcel E. Dorken
Separate sexes can evolve under nuclear inheritance when unisexuals have more than twice the reproductive fitness of hermaphrodites through one sex function (e.g., when females have more than twice the seed fertility of hermaphrodites). Because separate sexes are thought to evolve most commonly via a gynodioecious intermediate (i.e., populations in which females and hermaphrodites cooccur), the conditions under which females can become established in populations of hermaphrodites are of considerable interest. It has been proposed that resource-poor conditions could promote the establishment of females if hermaphrodites are plastic in their sex allocation and allocate fewer resources to seed production under these conditions. If this occurs, the seed fertility of females could exceed the doubling required for the evolution of unisexuality under low-, but not high-resource conditions (the sex-differential plasticity hypothesis). We tested this hypothesis using replicate experimental arrays of the aquatic herb Sagittaria latifolia grown under two fertilizer treatments. The results supported the sex-differential plasticity hypothesis, with females having more than twice the seed fertility of hermaphrodites under low-, but not high-fertilizer conditions. Our findings are consistent with the idea that separate sexes are more likely to evolve under unfavorable conditions. [source]


Effects of temperature and fertilization on nitrogen cycling and community composition of an urban lawn

GLOBAL CHANGE BIOLOGY, Issue 9 2008
NEETA S. BIJOOR
Abstract We examined the influence of temperature and management practices on the nitrogen (N) cycling of turfgrass, the largest irrigated crop in the United States. We measured nitrous oxide (N2O) fluxes, and plant and soil N content and isotopic composition with a manipulative experiment of temperature and fertilizer application. Infrared lamps were used to increase surface temperature by 3.5±1.3 °C on average and control and heated plots were split into high and low fertilizer treatments. The N2O fluxes increased following fertilizer application and were also directly related to soil moisture. There was a positive effect of warming on N2O fluxes. Soils in the heated plots were enriched in nitrogen isotope ratio (,15N) relative to control plots, consistent with greater gaseous losses of N. For all treatments, C4 plant C/N ratio was negatively correlated with plant ,15N, suggesting that low leaf N was associated with the use of isotopically depleted N sources such as mineralized organic matter. A significant and unexpected result was a large, rapid increase in the proportion of C4 plants in the heated plots relative to control plots, as measured by the carbon isotope ratio (,13C) of total harvested aboveground biomass. The C4 plant biomass was dominated by crabgrass, a common weed in C3 fescue lawns. Our results suggest that an increase in temperature caused by climate change as well as the urban heat island effect may result in increases in N2O emissions from fertilized urban lawns. In addition, warming may exacerbate weed invasions, which may require more intensive management, e.g. herbicide application, to manage species composition. [source]


Influence of cutting regime and fertilizer application on the botanical composition, yield and nutritive value of herbage of wet grasslands in Central Europe

GRASS & FORAGE SCIENCE, Issue 4 2009

Abstract The changes in dry matter (DM) yield, botanical composition and nutritive value of herbage to ruminants of two wet grasslands, Arrhenatherum elatius grassland (Experiment 1) and a Molinia caerulea fen meadow (Experiment 2), in which a range of cutting and fertilizer treatments were imposed in 1999, were assessed after 4,7 years of treatment imposition. Both experiments had a split-plot design with four replicates. In Experiment 1 the three main-plot cutting treatments were two cuts with a delayed first cut, three cuts and four cuts during the growing season of each year. In Experiment 2 the cutting treatments were two cuts with a traditional harvest time, two cuts with a delayed first cut and three cuts. The four sub-plot fertilizer treatments were an unfertilized control, application of a phosphorus and potassium (PK) fertilizer, application of a nitrogen (N) and PK fertilizer to the first cut only (N1PK) and application of PK plus N applied to each of two, three or four cuts (NcPK). Application of fertilizer influenced yield and botanical composition of herbage more than the cutting treatments while the opposite occurred for nutritive value of the herbage. Application of fertilizer increased the proportion of tall grasses in Experiment 1 and forbs in Experiment 2. The proportion of Equisetum palustre, present only in Experiment 1, was reduced from 0·33 to less than 0·01 by increased cutting frequency together with the NPK fertilizer treatments. In Experiment 1 diversity of vascular plants was negatively affected only by the four-cuts treatment while on both wet grasslands other cutting and fertilizer application treatments had no effect. Changes in DM yield of herbage caused by the cutting and fertilizer application treatments were similar for both vegetation types with DM yield increased significantly by fertilizer application but only slightly or not reduced by increasing the cutting frequency. Nutritive value of herbage was positively correlated with cutting frequency and was most influenced at the first cut. [source]


Agronomic performance and nutritive value of common and alternative grass and legume species in the Peruvian highlands

GRASS & FORAGE SCIENCE, Issue 2 2009
K. Bartl
Abstract The agronomic performance and nutritive value of twelve annual and perennial grasses and legumes were analysed in order to define alternatives to local forages for dry-season feeding of ruminants in the Peruvian Andes. There were twelve species and two fertilizer treatments (no fertilizer and a N;P;K fertilizer mainly applied at sowing) in an experiment with a randomized complete block design with three replicates at each of two sites. Plant height, soil cover by forage and weed species, frost damage, dry matter (DM) yield and nutritive value of herbage were evaluated in 2005 and 2006. Among the annual species, Hordeum vulgare L. cv. UNA 80 and ×Triticosecale Wittm. had the highest DM yields when fertilized (8226 and 6934 kg ha,1 respectively). Without fertilizer the alternative cultivars had similar DM yields to that of the local forages. Cultivars of Avena sativa L. had lower concentrations of neutral-detergent fibre (NDF) (557 g kg,1 DM) and higher concentrations of predicted net energy for lactation (5·86 MJ kg,1 DM) than the other annual grass species (625 g kg,1 DM and 5·01 MJ kg,1 DM respectively), while the legumes were superior in concentrations of crude protein (277 g kg,1 DM) and NDF (362 g kg,1 DM). Considering the low agronomic performance of the perennial forages, a mixture of fertilized annual grasses and legumes appears the most appropriate approach to meeting the demand for forage of high nutritive value in the Peruvian highlands. [source]


The response of manured forage maize to starter phosphorus fertilizer on chalkland soils in southern England

GRASS & FORAGE SCIENCE, Issue 2 2000
Withers
The impact of various starter phosphorus (P) fertilizers on the growth, nutrient uptake and dry-matter (DM) yield of forage maize (Zea mais) continuously cropped on the same area and receiving annual, pre-sowing, broadcast dressings of liquid and semi-solid dairy manures was investigated in two replicated plot experiments and in whole-field comparisons in the UK. In Experiment 1 on a shallow calcareous soil (27 mg l,1 Olsen-extractable P) in 1996, placement of starter P fertilizer (17 or 32 kg ha,1) did not benefit crop growth or significantly (P > 0·05) increase DM yield at harvest. However, in Experiment 2 on a deeper non-calcareous soil (41 mg l,1 Olsen-extractable P) in 1997, placement of starter P fertilizer (19 or 41 kg P ha,1), either applied alone or in combination with starter N fertilizer (10 or 25 kg N ha,1), significantly increased early crop growth (P < 0·01) and DM yield at harvest by 1·3 t ha,1 (P < 0·05) compared with a control without starter N or P fertilizer. Placement of starter N fertilizer alone did not benefit early crop growth, but gave similar yields as P, or N and P, fertilizer treatments at harvest. Large treatment differences in N and P uptake by mid-August had disappeared by harvest. In field comparisons over the 4-year period 1994,97, the addition of starter P fertilizer increased field cumulative surplus P by over 70%, but without significantly (P > 0·05) increasing DM yield, or nutrient (N and P) uptake, compared with fields that did not receive starter P fertilizer. The results emphasized the extremely low efficiency with which starter P fertilizers are utilized by forage maize and the need to budget manure and fertilizer P inputs more precisely in order to avoid excessive soil P accumulation and the consequent increased risk of P transfer to water causing eutrophication. [source]


Fertilizer affects the behaviour and performance of Plutella xylostella on brassicas

AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 3 2009
Joanna T. Staley
Abstract 1,Foliar nitrogen concentration, which can be manipulated in crop plants by fertilizer supply, has long been recognized as a major factor in phytophagous insect abundance and performance. More recently, the type of fertilizer supplied has been shown to influence the abundance of some herbivore species. The diamondback moth Plutella xylostella is a global pest of Brassica crops. Although it has been the subject of numerous studies on host-plant resistance and pest control, few studies have addressed the effect of abiotic factors, such as nutrient supply, on its performance and behaviour. 2,We assessed oviposition preference, larval feeding preference and larval performance of P. xylostella on two cultivars of Brassica oleracea. Plants were grown using two fertilizer types, John Innes fertilizer and an organic animal manure, at high and low concentrations. 3,Plutella xylostella laid more eggs on cultivar Derby Day than Drago. Derby Day was also the cultivar on which larval performance was maximized. However, differences in larval performance between cultivars were only found when plants were grown in compost with John Innes fertilizer, and not when fertilized with animal manure. 4,Foliar nitrogen concentration was greater in plants grown in high fertilizer treatments but did not differ between cultivars. The concentrations of three glucosinolate compounds (glucoiberin, sinigrin and glucobrassicin) were greater in the high fertilizer treatments. Glucosinolate concentrations were higher in the Drago than the Derby Day cultivar. 5,These results are discussed in relation to the preference-performance hypothesis, and the assessment of plant resistance differences between cultivars using different types of fertilizer. [source]


Establishing native plants on newly-constructed and older-reclaimed sites along West Virginia highways

LAND DEGRADATION AND DEVELOPMENT, Issue 4 2008
J.G. Skousen
Abstract Many state highway departments in the USA must use native plants for revegetating roadsides. We conducted two field studies in West Virginia to assess native plant establishment under two different conditions. On newly-constructed sites, native species were seeded alone or combined with non-native species. On older roadsides, native species were seeded in disturbed existing vegetation. In the first study, we used four seed mixtures comprised of seeds of native and non-native species, and two N-P-K fertilizer treatments at three newly-constructed sites. Native, warm-season grasses were slow to establish and only contributed 25 per cent cover in some plots after three years. Indiangrass (Sorghastrum nutans [L.] Nash), big bluestem (Andropogon gerardii Vitman), Brown-Eyed Susan (Rudbeckia triloba L.), and wild senna (Cassia hebecarpa Fernald) were the only seeded native species found. Fertilizer at 150,kg,ha,1 of 10-20-10 showed little influence on increasing plant cover. In the second study, we disturbed three different-aged established stands of vegetation composed of tall fescue (Festuca arundinacea Screb.) and crownvetch (Coronilla varia L.) by mowing, herbicide, or tillage, and native plants were seeded with and without fertilizer. Native cover was <10 per cent in all plots during the first year, but greatly increased by the second year to as much as 45 per cent in tilled plots, indicating that disturbance was necessary for natives to become important contributors within 2 years. Only switchgrass (Panicum virgatum L.), little bluestem (Andropogon scoparius Vitman), partridge pea (Chamaecrista fasciculate Michx.), and Brown-Eyed Susan were observed in plots. Fertilizer at 300,kg,ha,1 of 10-20-10 did not increase native plant cover on these sites. Based on our results, introducing or increasing the cover of native species along roadsides requires (1) reducing competition from non-native species, and (2) longer time periods for these slower-establishing species to be observed. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Changes in vegetation types and Ellenberg indicator values after 65 years of fertilizer application in the Rengen Grassland Experiment, Germany

APPLIED VEGETATION SCIENCE, Issue 2 2009
Milan Chytrý
Abstract Question: How does semi-natural grassland diversify after 65 years of differential application of Ca, N, P, and K fertilizers? Is fertilizer application adequately reflected by the Ellenberg indicator values (EIVs)? Location: Eifel Mountains, West Germany. Methods: The Rengen Grassland Experiment (RGE) was established in an oligotrophic grassland in 1941. Six fertilizer treatments (Ca, CaN, CaNP, CaNP-KCl, CaNP-K2SO4, and unfertilized control) were applied annually in five complete randomized blocks. Species composition of experimental plots was sampled in 2006 and compared with constancy tables representing grassland types in a phytosociological monograph of a wider area. Each plot was matched to the most similar community type using the Associa method. Mean EIVs were calculated for each treatment. Results: The control plots supported oligotrophic Nardus grassland of the Polygalo-Nardetum association (Violion caninae alliance). Vegetation in the Ca and CaN treatments mostly resembled montane meadow of Geranio-Trisetetum (Polygono-Trisetion). Transitional types between Poo-Trisetetum and Arrhenatheretum (both from the Arrhenatherion alliance) developed in the CaNP treatment. In the CaNP-KCl and CaNP-K2SO4 treatments, vegetation corresponded to the mesotrophic Arrhenatheretum meadow. Major discontinuity in species composition was found between control, Ca, and CaN treatments, and all treatments with P application. EIVs for both nutrients and soil reaction were considerably higher in P treatments than in Ca and CaN treatments. Surprisingly, the control plots had the lowest EIVs for continentality and moisture, although these factors had not been manipulated in the experiment. Conclusions: Long-term fertilizer application can create different plant communities belonging to different phytosociological alliances and classes, even within a distance of a few meters. Due to their correlated nature, EIVs can erroneously indicate changes in factors that actually did not change, but co-varied with factors that did change. In P-limited ecosystems, EIVs for nutrients may indicate availability of P rather than N. [source]