Home About us Contact | |||
Fertilization Experiment (fertilization + experiment)
Selected AbstractsChernozem,Soil of the Year 2005JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 6 2005Manfred Altermann Abstract The proclamation of the "Soil of the Year" was made for the first time in Germany in 2005 on occasion of the World Soil Day. Chernozems were selected for this purpose. In this paper an overview of these groups of soils is given. Chernozems are concentrated in the drought region of Central Germany. A standard profile from the core area of Chernozems developed from loess is presented with comprehensive laboratory analysis. Chernozems developed primarily upon carbonatic loess substrates under summer-dry climatic conditions in an open park-like landscape with isolated forest stands. The development of Chernozems began as early as the late glacial period, and they were fully developed by the Atlantikum age. The far-reaching, uniformly thick humus horizons indicate substrate differences in the loess cover, which are partly the result of bioturbation. Within Germany, Chernozems and Chernozem-like soils make up approx. 3% of the surface area and 5% (approx. 11,000 km2) of the arable land. The results of the Static Fertilization Experiment in Bad Lauchstädt, founded in 1902, clarify the high value of Chernozem for biomass production and the environment. Each loss due to erosion or decrease in surface area reduces the fulfillment of soil ecological functions of the soils and is comparable to a loss of animal and plant species. Therefore, soil scientists and the results of soil research must be more comprehensively implemented for soil preservation, protection, and politics. For acceptance of these goals among the general public and the political-decision makers, the campaign "Soil of the Year" should give some thought-provoking impulses. Schwarzerde , Boden des Jahres 2005 Anlässlich des Weltbodentages wurde in Deutschland für 2005 mit der Schwarzerde erstmalig ein ,Boden des Jahres" proklamiert. Damit soll in der Bevölkerung und bei politischen Entscheidungsträgern ein stärkeres Bewusstsein für den Boden und ein höheres Engagement für den Bodenschutz angeregt werden. Im Beitrag wird ein Überblick über diese Bodengruppe gegeben und ein Standardprofil aus dem Kerngebiet der Schwarzerden aus Löss (Mitteldeutsches Trockengebiet) mit umfassenden Laboranalysen exemplarisch präsentiert. Schwarzerden entwickelten sich vorwiegend auf kalkreichen Lössen unter sommertrockenen Klimabedingungen in einer offenen parkähnlichen Landschaft mit Waldinseln. Die Entstehung der Schwarzerden setzte bereits im Spätglazial ein, und im Atlantikum waren sie voll entwickelt. Die weiträumig gleiche Mächtigkeit der Humushorizonte zeichnet primäre Substratunterschiede in der Lössdecke nach; sie sind nicht nur das Ergebnis einer Bioturbation. In Deutschland nehmen die Schwarzerden und schwarzerdeähnlichen Böden etwa 3 % der Bodenfläche bzw. 5 % (ca. 11.000 km2) der landwirtschaftlichen Nutzfläche ein. Die Ergebnisse des seit 1902 bestehenden Statischen Düngungsversuchs Bad Lauchstädt verdeutlichen den hohen Wert der Schwarzerden für Biomasseproduktion und Umwelt. Jeder Verlust durch Erosion oder Flächenentzug mindert die Erfüllung ökologischer Funktionen der Böden und ist dem Artenverlust von Tieren und Pflanzen gleichzustellen. In der Bodenpolitik müssen deshalb die Ergebnisse der Bodenforschung zum Erhalt und Schutz unserer Böden umfassender als bisher umgesetzt und Bodenwissenschaftler stärker in politische Entscheidungen eingebunden werden. Für die Akzeptanz und Umsetzung dieser Ziele in der Öffentlichkeit soll der ,Boden des Jahres" Impulse geben. [source] Fertilization effects on species density and primary productivity in herbaceous plant communitiesOIKOS, Issue 3 2000Laura Gough Fertilization experiments in plant communities are often interpreted in the context of a hump-shaped relationship between species richness and productivity. We analyze results of fertilization experiments from seven terrestrial plant communities representing a productivity gradient (arctic and alpine tundra, two old-field habitats, desert, short- and tall-grass prairie) to determine if the response of species richness to experimentally increased productivity is consistent with the hump-shaped curve. In this analysis, we compared ratios of the mean response in nitrogen-fertilized plots to the mean in control plots for aboveground net primary productivity (ANPP) and species density (D; number of species per plot of fixed unit area). In general, ANPP increased and plant species density decreased following nitrogen addition, although considerable variation characterized the magnitude of response. We also analyzed a subset of the data limited to the longest running studies at each site (,4 yr), and found that adding 9 to 13 g N m,2 yr,1 (the consistent amount used at all sites) increased ANPP in all communities by approximately 50% over control levels and reduced species density by approximately 30%. The magnitude of response of ANPP and species density to fertilization was independent of initial community productivity. There was as much variation in the magnitude of response among communities within sites as among sites, suggesting community-specific mechanisms of response. Based on these results, we argue that even long-term fertilization experiments are not good predictors of the relationship between species richness and productivity because they are relatively small-scale perturbations whereas the pattern of species richness over natural productivity gradients is influenced by long-term ecological and evolutionary processes. [source] Rust severity in bioenergy willow plantations treated with additional nutrientsFOREST PATHOLOGY, Issue 1 2009M. Toome Summary A 3-year field study was carried out to determine the effect of wastewater irrigation and previous differences in mineral fertilization on the occurrence of willow leaf rust (Melampsora epitea). The experiment was conducted in two energy forest plantations: one designed for wastewater purification and the other as a mineral fertilization experiment. The severity of leaf rust on different clones and sites with different treatments was assessed by counting the number of uredinia per leaf unit area. Generally, plants irrigated with wastewater consistently had more leaf rust, irrespective of the study years or willow clones. Previous mineral fertilization had mixed effects on different clones 2 years after the last application. Three years after the last fertilizer application, however, no impact of the treatment on rust disease development was detected. In general, the rust levels differed from year to year probably due to climate. In this study, no correlation was detected between shoot age and rust severity, whereas climate and treatments strongly influenced leaf rust levels on some willow clones. [source] Nitrogen utilization by Hylocomium splendens in a boreal forest fertilization experimentFUNCTIONAL ECOLOGY, Issue 3 2006Å. FORSUM Summary 1Nitrogen uptake in the terricolous bryophyte Hylocomium splendens (Hedw.) B.S.G. was studied in a boreal forest long-term N-treatment experiment including control plots, N-addition plots (50 kg N ha,1 year,1 for 8 years) and recovery plots (50 kg N ha,1 year,1 for 5 years and thereafter no N addition for 3 years). 2A main objective was to explore whether the N treatments changed bryophyte uptake of different inorganic and organic N forms. In addition, we estimated the contribution of N from throughfall precipitation to the bryophyte N supply. 3The results demonstrated that bryophyte N uptake was similar in all the long-term N-treatment plots. Hylocomium splendens took up more 15N labelled than or glycine when these N forms were applied in situ by the spraying of solutions with N concentrations similar to those in precipitation. 4Analysis of the precipitation collected beneath the closed tree canopy from late May to early October revealed that it contributed 2·0 kg N ha,1 during the period studied, distributed between (78%), amino acid N (17%) and (5%). 5The study highlights that, in addition to analyses of and (normally included in standard environmental monitoring of precipitation), analysis of amino acid N must be performed to account fully for the precipitation N input to bryophytes in boreal forest ecosystems. [source] The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soilsGLOBAL CHANGE BIOLOGY, Issue 9 2010DANIELA F. CUSACK Abstract Nitrogen (N) deposition is projected to increase significantly in tropical regions in the coming decades, where changes in climate are also expected. Additional N and warming each have the potential to alter soil carbon (C) storage via changes in microbial activity and decomposition, but little is known about the combined effects of these global change factors in tropical ecosystems. In this study, we used controlled laboratory incubations of soils from a long-term N fertilization experiment to explore the sensitivity of soil C to increased N in two N-rich tropical forests. We found that fertilization corresponded to significant increases in bulk soil C concentrations, and decreases in C loss via heterotrophic respiration (P< 0.05). The increase in soil C was not uniform among C pools, however. The active soil C pool decomposed faster with fertilization, while slowly cycling C pools had longer turnover times. These changes in soil C cycling with N additions corresponded to the responses of two groups of microbial extracellular enzymes. Smaller active C pools corresponded to increased hydrolytic enzyme activities; longer turnover times of the slowly cycling C pool corresponded to reduced activity of oxidative enzymes, which degrade more complex C compounds, in fertilized soils. Warming increased soil respiration overall, and N fertilization significantly increased the temperature sensitivity of slowly cycling C pools in both forests. In the lower elevation forest, respired CO2 from fertilized cores had significantly higher ,14C values than control soils, indicating losses of relatively older soil C. These results indicate that soil C storage is sensitive to both N deposition and warming in N-rich tropical soils, with interacting effects of these two global change factors. N deposition has the potential to increase total soil C stocks in tropical forests, but the long-term stability of this added C will likely depend on future changes in temperature. [source] Impacts of increased nitrogen supply on Norwegian lichen-rich alpine communities: a 10-year experimentJOURNAL OF ECOLOGY, Issue 3 2005ELI FREMSTAD Summary 1Species cover was tested during a 10-year fertilization experiment in the low-alpine Cetrarietum nivalis community and the middle-alpine Phyllodoco-Juncetum trifidi community in the Dovre mountains of south-central Norway. Nitrogen was added at 7, 35 and 70 kg N ha,1 year,1, with the highest dose corresponding to approximately 3.5 times the annual deposition in south-west Norway. 2Both communities are dominated by lichens (Cladonia spp. and Cetraria spp., respectively), have a patchy structure and are ,conservative' as regards species content. 3Lichens, which showed a decrease in cover and size, and after some years developed discoloured thalli, are the best organisms for monitoring changes in alpine vegetation that is exposed to increased nitrogen deposition. The most sensitive species in Cetrarietum nivalis appeared to be Alectoria nigricans and Cetraria ericetorum, but more abundant species (Cladonia mitis, C. stellaris and Cetraria nivalis) are likely to be more reliable indicators. Cetraria delisei seems to be a reliable indicator species for monitoring in Phyllodoco-Juncetum trifidi. 4Fertilization had no significant effect on the vascular plants (dwarf shrubs and a few graminoids) in either community, except for Festuca ovina, the cover of which increased slightly. 5Nitrogen pollution may affect oligotrophic, alpine communities differently, depending on their species composition and horizontal structure (patchiness). 6It is suggested that other factors, such as climate, soil properties and community structure, may be more important than long-range nitrogen pollution for determining species composition and species cover in many of the oligotrophic, alpine communities in southern Norway. However, in lichen-rich communities, critical loads have already been exceeded in the most polluted areas of south-west Norway. [source] Nutrient limitation in species-rich Calthion grasslands in relation to opportunities for restoration in a peat meadow landscapeAPPLIED VEGETATION SCIENCE, Issue 3 2010B.P. Van de Riet Abstract Questions: Which nutrient(s) limit(s) vegetation productivity in Calthion grasslands? Is phosphorus release a bottleneck for restoration of species-rich Calthion grasslands on rewetted dairy meadows? Location: Three species-rich Calthion grasslands in the Western Peat District in the Netherlands. Methods: We conducted a field fertilization experiment with nitrogen (N), phosphorus (P) and potassium (K) in three existing Calthion grasslands to evaluate the potential for restoration on rewetted dairy meadows. Responses of above-ground biomass, tissue nutrient concentrations and nutrient ratios were determined after 2 yr of fertilization. Results: Biomass increased with fertilization with N-only and K-only but did not react to P-only additions. Comparisons of tissue nutrient concentrations and nutrient ratios also gave indications of N and K limitation. Conclusions: The strong P release expected after rewetting should not necessarily interfere with restoration of Calthion communities on rewetted dairy meadows. It is concluded that for successful restoration management measures should focus on reducing N and/or K availability. Potassium might be an overlooked bottleneck in the restoration of species-rich grasslands. [source] Effects of fertilization on understorey vegetation in a Norwegian Pinus sylvestris forestAPPLIED VEGETATION SCIENCE, Issue 2 2002Astrid Skrindo Abstract. Boreal coniferous forests have been impacted by long distance airborne pollutant deposition for most of the 20th century. Changes in forest understorey vegetation attributable to N-deposition have been observed in southern Sweden, but not so far in southern Norway. We recorded the quantity of all species of vascular plants, bryophytes and lichens in 144 plots in a fertilization experiment in a 35-yr old Pinus sylvestris forest in Aust Agder County, southernNorway initiated 6 yr before our study. Each plot represented a combination of three levels of nitrogen, two levels of magnesium and two levels of phosphorus addition. Effects of fertilization on species quantity were tested by Kruskal-Wallis one-way analysis by ranks. For vascular plants, only small and hardly significant differences were found between treatments and control. Significant negative effects of N-fertilization were found on both mosses and lichens. To some extent, these effects could be attributed to direct effects of application of the fertilizer, but were more likely to be due to a negative feedback response to the faster growth of pine trees in fertilized stands, reducing throughfall precipitation and increasing litter fall. Significant differences between Mg- and P-fertilized sites and respective controls were found for too few species to be likely to represent an overall trend. [source] Characterization of Xenopus egg membrane microdomains containing uroplakin Ib/III complex: roles of their molecular interactions for subcellular localization and signal transductionGENES TO CELLS, Issue 2 2007A.K.M. Mahbub Hasan A single-transmembrane protein uroplakin III (UPIII) and its tetraspanin binding-partner uroplakin Ib (UPIb) are members of the UP proteins that were originally identified in mammalian urothelium. In Xenopus laevis eggs, these proteins: xUPIII and xUPIb, are components of the cholesterol-enriched membrane microdomains or "rafts" and involved in the sperm,egg membrane interaction and subsequent egg activation signaling via Src tyrosine kinase at fertilization. Here, we investigate whether the xUPIII-xUPIb complex is in close proximity to CD9, a tetraspanin that has been implicated in the sperm,egg fusion in the mouse and GM1, a ganglioside typically enriched in egg rafts. Preparation of the egg membrane microdomains using different non-ionic detergents (Brij 98 and Triton X-100), chemical cross-linking, co-immunoprecipitation, in vitro kinase assay and in vitro fertilization experiments demonstrated that GM1, but not CD9, is in association with the xUPIII-xUPIb complex and contributes to the sperm-dependent egg activation. Transfection experiments using HEK293 cells demonstrated that xUPIII and xUPIb localized efficiently to the cholesterol-dependent membrane microdomains when they were co-expressed, whereas co-expression of xUPIII and CD9, instead of xUPIb, did not show this effect. Furthermore, xUPIII and xUPIb were shown to suppress kinase activity of the wild type, but not a constitutively active form of, Xenopus Src protein co-expressed in HEK293 cells. These results provide novel insight into the molecular architecture of the egg membrane microdomains containing xUPIII, xUPIb and Src, which may contribute to the understanding of sperm,egg interaction and signaling during Xenopus fertilization. [source] Prediction of species response to atmospheric nitrogen deposition by means of ecological measures and life history traitsJOURNAL OF ECOLOGY, Issue 1 2002Martin Diekmann Summary 1The main objective of this study was to predict the responses of vascular plant species to atmospheric nitrogen deposition and enhanced soil nitrogen levels. The study was carried out in deciduous forests located in three regions of southern Sweden. The abundance of vascular plants, as well as soil pH and nitrogen mineralization rates, were studied in a total of 661 sample plots. 2We calculated an ecological measure (Ndev value) for all species based on their observed vs. expected nitrification ratios at a given soil pH, and compared its accuracy in predicting abundance changes with results using life history traits. Data from long-term field studies and fertilization experiments were used for validation. 3Ndev values were positively correlated between neighbouring regions. Values for the southernmost region (Skåne) were also positively related to the changes in species frequency observed in large-scale flora surveys and permanent plot studies in that area and with species changes reported from Central Europe. Values from one of two other regions were also consistent. Ndev values from Skåne (but no other region) predicted species responses in short-term fertilization experiments. 4No life history trait was as good a predictor as Ndev, although plant height, leaf anatomy, leaf nitrogen concentration and phenology showed significant correlations. Attributes related to taxonomy, life form, relative growth rate and habitat type showed no agreement with the changes in species abundance. 5We predict that species with the following attribute syndrome will increase in abundance in response to enhanced nitrogen levels: those favoured by a high soil nitrification ratio relative to other species at a given soil pH, tall stature, hydro- to helomorph anatomy, high leaf nitrogen concentration and a late phenological development. [source] Fertilization effects on species density and primary productivity in herbaceous plant communitiesOIKOS, Issue 3 2000Laura Gough Fertilization experiments in plant communities are often interpreted in the context of a hump-shaped relationship between species richness and productivity. We analyze results of fertilization experiments from seven terrestrial plant communities representing a productivity gradient (arctic and alpine tundra, two old-field habitats, desert, short- and tall-grass prairie) to determine if the response of species richness to experimentally increased productivity is consistent with the hump-shaped curve. In this analysis, we compared ratios of the mean response in nitrogen-fertilized plots to the mean in control plots for aboveground net primary productivity (ANPP) and species density (D; number of species per plot of fixed unit area). In general, ANPP increased and plant species density decreased following nitrogen addition, although considerable variation characterized the magnitude of response. We also analyzed a subset of the data limited to the longest running studies at each site (,4 yr), and found that adding 9 to 13 g N m,2 yr,1 (the consistent amount used at all sites) increased ANPP in all communities by approximately 50% over control levels and reduced species density by approximately 30%. The magnitude of response of ANPP and species density to fertilization was independent of initial community productivity. There was as much variation in the magnitude of response among communities within sites as among sites, suggesting community-specific mechanisms of response. Based on these results, we argue that even long-term fertilization experiments are not good predictors of the relationship between species richness and productivity because they are relatively small-scale perturbations whereas the pattern of species richness over natural productivity gradients is influenced by long-term ecological and evolutionary processes. [source] |