Fertile Habitats (fertile + habitat)

Distribution by Scientific Domains


Selected Abstracts


Changes in plant interactions along a gradient of environmental stress

OIKOS, Issue 1 2001
Francisco I. Pugnaire
A combination of competition and facilitation effects operating simultaneously among plant species appears to be the rule in nature, where these effects change along productivity gradients often in a non-proportional manner. We investigated changes in competition and facilitation between a leguminous shrub, Retama sphaerocarpa, and its associate understorey species along an environmental gradient in semi-arid southeast Spain. Our results show a change in the net balance of the interaction between the shrub and several of its associated species, from clearly positive in the water-stressed, infertile environment to neutral or even negative in the more fertile habitat. There was a weakening of facilitation along the fertility gradient as a consequence of improved abiotic conditions. Competition was the most intense for below-ground resources in the less fertile environment while total competition tended to increase towards the more productive end of the gradient. Changes in the balance of the interaction between and among different plant species along the gradient of stress were caused by a decline in facilitation rather than by a change in competition. As both competition intensity and facilitation change along gradients of resource availability, plant interactions are best viewed as dynamic relationships, the outcome of which depends on abiotic conditions. [source]


Herbivore and neighbour effects on tundra plants depend on species identity, nutrient availability and local environmental conditions

JOURNAL OF ECOLOGY, Issue 1 2008
Anu Eskelinen
Summary 1I performed a factorial transplant experiment to test the roles of plant,plant interactions, herbivory by mammal grazers and resource availability for plant performance in two contrasting habitat types in a mountain tundra environment. 2Three perennial dicot herbs, Solidago virgaurea, Erigeron uniflorus and Saussurea alpina, were used as target plants to study the effects of neighbour removal and grazer exclusion, and nutrient enrichment and liming on plant growth, survival and reproductive success. These treatments were replicated in two contrasting habitat types, infertile acidic and fertile non-acidic tundra heaths. 3The effects of plant,plant interactions on Saussurea varied from facilitation in infertile acidic habitats to competition in fertile non-acidic habitats and in nutrient-enriched conditions, while the overall performance of Saussurea was strongly negatively influenced by the presence of grazers, the effects being greater when plants were fertilized and in fertile non-acidic heaths. Erigeron performed better under nutrient-enriched conditions than in unfertilized plots, when neighbours had been removed. Solidago was negatively affected by grazing and this impact was greater in nutrient-enriched plots and in non-acidic heaths than in acidic heaths and for unfertilized controls. There were no interactions between neighbour removal and herbivory in any of the three species, indicating that these processes operated independently. 4Grazer-preferred tall plants are strongly limited by consumption by mammal herbivores in nutrient-enriched conditions and in inherently fertile habitats. By contrast, arctic,alpine specialists and species of low stature experience increased competition with neighbouring vegetation in fertile habitats and in enriched nutrient conditions. 5Synthesis. Overall, the results suggest that the strength and directions of plant,plant and plant,herbivore interactions depend on plant species identity and are modified by soil edaphic factors to govern vegetation processes in tundra plant communities. These findings have important implications for understanding the forces structuring vegetation in barren tundra ecosystems under a changing environment. [source]


Invasion Possibility and Potential Effects of Rhus typhina on Beijing Municipality

JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 5 2008
Guangmei Wang
Abstract Rhus typhina, an alien species introduced from North America, was identified as a main afforestation species in Beijing municipality. However, its invasiveness is still at odds. To clarify this problem, we applied the North American Screening System and the Australian Screening System to preliminarily predict its invasion possibility. Both screening systems gave the same recommendation to "reject". The geographical distribution was surveyed, with the population features of R. typhina against the native plant communities being assessed. With anthropogenic assistance, R. typhina has been scattered on almost all habitats from downtown to mountains, including roadsides, farmlands and protected areas. As a clonal shrub, R. typhina possessed a high spreading rate, varying from 6.3 m/3 years at sterile habitats to 6.7 m/3 years at fertile ones. Significantly lower species richness, individual density and diversity were observed in the R. typhina community than those of the native Vitex negundo Linn.var. heterophylla (Franch.) Rehd. community at both sterile and fertile habitats. Continual wide plantation of R. typhina may further foster its population expansion, which helps the species to overcome spatial isolation. The fact that each root fragment can develop into a new individual makes R. typhina very difficult to be eradicated once established. From a biological point of view, we believe that R. typhina is a plant invader in Beijing. We therefore suggest the government should remove the name of R. typhina from the main tree species list in afforesting Beijing. [source]


Chemical composition and construction cost for roots of Mediterranean trees, shrub species and grassland communities

PLANT CELL & ENVIRONMENT, Issue 5 2002
F. Martínez
Abstract The construction cost of fine roots was studied in 23 woody species and two grassland communities, growing under natural conditions in southern Spain. Calculation of the energy (glucose) required for their synthesis was based on the quantification of chemical components present in tissues. Despite considerable differences in the chemical composition of the three life forms studied (trees, shrubs and herbaceous), detected differences in construction cost were non-significant (mean value: 1·64 ± 0·13 g glucose g,1). However, shrubs and herbaceous plants growing in more fertile habitats expended significantly less energy on root synthesis (1·58 ± 0·06 and 1·41 ± 0·05 g glucose g,1, respectively) than those growing in less fertile areas (1·80 ± 0·06 and 1·57 ± 0·1 g glucose g,1, respectively), because they contained smaller amounts of either waxes (shrubs) or lignins (herbaceous), both expensive to synthesize, and, proportionately, more cellulose; which is inexpensive to synthesize. Deciduous and evergreen tree species also differed mainly with regard to wax and cellulose contents, giving rise to a significantly higher construction cost in evergreens (1·57 ± 0·07 g glucose g,1 versus 1·78 ± 0·02 g glucose g,1). The differences observed in construction cost appeared to be due more to habitat-induced differences in chemical composition than to any intrinsic difference between the species studied. [source]