Femorotibial Joint (femorotibial + joint)

Distribution by Scientific Domains


Selected Abstracts


A cranial intercondylar arthroscopic approach to the caudal medial femorotibial joint of the horse

EQUINE VETERINARY JOURNAL, Issue 1 2009
T. Muurlink
Summary Reason for performing study: Current noninvasive techniques for imaging the soft tissue structures of the stifle have limitations. Arthroscopy is commonly used for the investigation and treatment of stifle pain. Cranial and caudal arthroscopic approaches to the femorotibial joints are used. However, complete examination of the axial aspect of the medial femorotibial joint (MFTJ) is not possible currently. Objective: To develop a cranial approach to the caudal pouch of the MFTJ and to assess whether it would allow a more complete examination of the compartment and facilitate the caudomedial approach. Method: The regional anatomy was reviewed and the technique developed on cadavers. A series of nonrecovery surgeries were performed to evaluate the procedure, which was then used in 7 clinical cases. Advantages compared to existing techniques and complications encountered were recorded. Results: Successful entry into the caudal pouch of the MFTJ was achieved in 20 of 22 cadaver legs, 8 of 8 joints of nonrecovery surgery horses and 6 of 7 clinical cases operated. The caudal ligament of the medial meniscus could be visualised, along with other axial structures of the caudal joint pouch. The technique was used to facilitate a caudomedial approach and allowed better triangulation within the joint space. Complications were minor and included puncture of the caudal joint capsule and scoring of the axial medial femoral condyle. Conclusions and potential relevance: It is possible to access the caudal pouch of the MFTJ arthroscopically using a cranial intercondylar approach. The technique has advantages when compared to existing techniques and is associated with few significant complications. A cranial approach to the caudal pouch of the MFTJ could complement existing techniques and be useful clinically. [source]


Safety of, and biological and functional response to, a novel metallic implant for the management of focal full-thickness cartilage defects: Preliminary assessment in an animal model out to 1 year

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 5 2006
Carl A. Kirker-Head
Abstract Focal full-thickness cartilage lesions of the human medial femoral condyle (MFC) can cause pain and functional impairment. Affected middle-aged patients respond unpredictably to existing treatments and knee arthroplasty may be required, prompting risk of revision. This study assesses the safety of, and biological and functional response to, a metallic resurfacing implant which may delay or obviate the need for traditional arthroplasty. The anatomic contour of the surgically exposed MFC of six adult goats was digitally mapped and an 11 mm diameter full-thickness osteochondral defect was created. An anchor-based Co,Cr resurfacing implant, matching the mapped articular contour, was implanted. Each goat's contralateral unoperated femorotibial joint was used as a control. Postoperative outcome was assessed by lameness examination, radiography, arthroscopy, synoviocentesis, necropsy, and histology up to 26 (n,=,3) or 52 (n,=,3) weeks. By postoperative week (POW) 4, goats demonstrated normal range of motion, no joint effusion, and only mild lameness in the operated limb. By POW 26 the animals were sound with only occasional very mild lameness. Arthroscopy at POW 14 revealed moderate synovial inflammation and a chondral membrane extending centrally across the implant surface. Radiographs at POWs 14 to 52 implied implant stability in the operated joints, as well as subchondral bone remodeling and mild exostosis formation in the operated and contralateral unoperated joints of some goats. By POW 26, histology revealed new trabecular bone abutting the implant. At POWs 26 and 52 MFC cartilage was metachromatic and intact in the operated and unoperated femorotibial joints. Proximal tibiae of some operated and unoperated limbs demonstrated limited subchondral bone remodeling and foci of articular cartilage fibrillation and thinning. The chondral membrane crossing the prosthesis possessed a metachromatic matrix containing singular and clustered chondrocytes. Our data imply the safety, biocompatibility, and functionality of the implant. Focal articular damage was documented in the operated joints at POWs 26 and 52, but lesions were much reduced over those previously reported in untreated defects. Expanded animal or preclinical human studies are justified. © 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res [source]


Use of biodegradable urethane-based adhesives to appose meniscal defect edges in an ovine model: a preliminary study

AUSTRALIAN VETERINARY JOURNAL, Issue 6 2008
JR FIELD
Objective To evaluate the biological response to two urethane-based adhesives used to repair full thickness meniscal wounds created in the partially vascularised (red-white) zone. Design An ovine bilateral meniscal defect model was used to evaluate the initial biological response of the meniscal cartilage and synovium over a 1-month period. A 10-mm full-thickness defect was created in the medial meniscus of each femorotibial joint. The defects were either left untreated or repaired using the urethane-based adhesives. Synovial fluid, synovial membrane and the meniscal cartilages were retrieved at necropsy for cytological and histological assessment. Results The ovine model proved to be a suitable system for examining meniscal repair. Untreated defects showed no tissue apposition or cellular healing response, whereas all eight defects repaired with the two urethane-based adhesive formulations showed signs of repair and tissue regeneration with indications of cell infiltration and new collagen deposition in and around the polymer. No adverse cellular response to the adhesives was observed in the meniscal defect or in the synovial membrane and fluid. Conclusion Trauma to the knee commonly results in tears to the meniscal cartilage, with the majority of these occurring in the partially vascularised (red-white) or non-vascularised (white) zones of the meniscus. Repair, and subsequent healing, of these tears is poor because of the reduced vascularity and limited surgical access. The present data indicate that an ovine model is a suitable system for examining meniscal repair, and that development of urethane-based adhesives offers a strategy that may be clinically effective for the treatment of these injuries. [source]


A cranial intercondylar arthroscopic approach to the caudal medial femorotibial joint of the horse

EQUINE VETERINARY JOURNAL, Issue 1 2009
T. Muurlink
Summary Reason for performing study: Current noninvasive techniques for imaging the soft tissue structures of the stifle have limitations. Arthroscopy is commonly used for the investigation and treatment of stifle pain. Cranial and caudal arthroscopic approaches to the femorotibial joints are used. However, complete examination of the axial aspect of the medial femorotibial joint (MFTJ) is not possible currently. Objective: To develop a cranial approach to the caudal pouch of the MFTJ and to assess whether it would allow a more complete examination of the compartment and facilitate the caudomedial approach. Method: The regional anatomy was reviewed and the technique developed on cadavers. A series of nonrecovery surgeries were performed to evaluate the procedure, which was then used in 7 clinical cases. Advantages compared to existing techniques and complications encountered were recorded. Results: Successful entry into the caudal pouch of the MFTJ was achieved in 20 of 22 cadaver legs, 8 of 8 joints of nonrecovery surgery horses and 6 of 7 clinical cases operated. The caudal ligament of the medial meniscus could be visualised, along with other axial structures of the caudal joint pouch. The technique was used to facilitate a caudomedial approach and allowed better triangulation within the joint space. Complications were minor and included puncture of the caudal joint capsule and scoring of the axial medial femoral condyle. Conclusions and potential relevance: It is possible to access the caudal pouch of the MFTJ arthroscopically using a cranial intercondylar approach. The technique has advantages when compared to existing techniques and is associated with few significant complications. A cranial approach to the caudal pouch of the MFTJ could complement existing techniques and be useful clinically. [source]


Safety of, and biological and functional response to, a novel metallic implant for the management of focal full-thickness cartilage defects: Preliminary assessment in an animal model out to 1 year

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 5 2006
Carl A. Kirker-Head
Abstract Focal full-thickness cartilage lesions of the human medial femoral condyle (MFC) can cause pain and functional impairment. Affected middle-aged patients respond unpredictably to existing treatments and knee arthroplasty may be required, prompting risk of revision. This study assesses the safety of, and biological and functional response to, a metallic resurfacing implant which may delay or obviate the need for traditional arthroplasty. The anatomic contour of the surgically exposed MFC of six adult goats was digitally mapped and an 11 mm diameter full-thickness osteochondral defect was created. An anchor-based Co,Cr resurfacing implant, matching the mapped articular contour, was implanted. Each goat's contralateral unoperated femorotibial joint was used as a control. Postoperative outcome was assessed by lameness examination, radiography, arthroscopy, synoviocentesis, necropsy, and histology up to 26 (n,=,3) or 52 (n,=,3) weeks. By postoperative week (POW) 4, goats demonstrated normal range of motion, no joint effusion, and only mild lameness in the operated limb. By POW 26 the animals were sound with only occasional very mild lameness. Arthroscopy at POW 14 revealed moderate synovial inflammation and a chondral membrane extending centrally across the implant surface. Radiographs at POWs 14 to 52 implied implant stability in the operated joints, as well as subchondral bone remodeling and mild exostosis formation in the operated and contralateral unoperated joints of some goats. By POW 26, histology revealed new trabecular bone abutting the implant. At POWs 26 and 52 MFC cartilage was metachromatic and intact in the operated and unoperated femorotibial joints. Proximal tibiae of some operated and unoperated limbs demonstrated limited subchondral bone remodeling and foci of articular cartilage fibrillation and thinning. The chondral membrane crossing the prosthesis possessed a metachromatic matrix containing singular and clustered chondrocytes. Our data imply the safety, biocompatibility, and functionality of the implant. Focal articular damage was documented in the operated joints at POWs 26 and 52, but lesions were much reduced over those previously reported in untreated defects. Expanded animal or preclinical human studies are justified. © 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res [source]


Cartilage degradation biomarkers predict efficacy of a novel, highly selective matrix metalloproteinase 13 inhibitor in a dog model of osteoarthritis: Confirmation by multivariate analysis that modulation of type ii collagen and aggrecan degradation peptides parallels pathologic changes

ARTHRITIS & RHEUMATISM, Issue 10 2010
Steven Settle
Objective To demonstrate that the novel highly selective matrix metalloproteinase 13 (MMP-13) inhibitor PF152 reduces joint lesions in adult dogs with osteoarthritis (OA) and decreases biomarkers of cartilage degradation. Methods The potency and selectivity of PF152 were evaluated in vitro using 16 MMPs, TACE, and ADAMTS-4 and ADAMTS-5, as well as ex vivo in human cartilage explants. In vivo effects were evaluated at 3 concentrations in mature beagles with partial medial meniscectomy. Gross and histologic changes in the femorotibial joints were evaluated using various measures of cartilage degeneration. Biomarkers of cartilage turnover were examined in serum, urine, or synovial fluid. Results were analyzed individually and in combination using multivariate analysis. Results The potent and selective MMP-13 inhibitor PF152 decreased human cartilage degradation ex vivo in a dose-dependent manner. PF152 treatment of dogs with OA reduced cartilage lesions and decreased biomarkers of type II collagen (type II collagen neoepitope) and aggrecan (peptides ending in ARGN or AGEG) degradation. The dose required for significant inhibition varied with the measure used, but multivariate analysis of 6 gross and histologic measures indicated that all doses differed significantly from vehicle but not from each other. Combined analysis of cartilage degradation markers showed similar results. Conclusion This highly selective MMP-13 inhibitor exhibits chondroprotective effects in mature animals. Biomarkers of cartilage degradation, when evaluated in combination, parallel the joint structural changes induced by the MMP-13 inhibitor. These data support the potential therapeutic value of selective MMP-13 inhibitors and the use of a set of appropriate biomarkers to predict efficacy in OA clinical trials. [source]