Home About us Contact | |||
Female Sexual Behaviour (female + sexual_behaviour)
Selected AbstractsDouble Oestrogen Receptor , and , Knockout Mice Reveal Differences in Neural Oestrogen-Mediated Progestin Receptor Induction and Female Sexual BehaviourJOURNAL OF NEUROENDOCRINOLOGY, Issue 10 2003A. E. Kudwa Abstract To test the hypothesis that oestrogen receptor , (ER,) and ER, act together to mediate the actions of oestrogen in the ventromedial hypothalamus (VMH), we used mice with single or double knockout mutations of the ER, and ER, genes. Ovariectomized mice were implanted with 17,-oestradiol and killed 5 days later. Oestradiol treatment promoted progestin receptor (PR)-immunoreactivity (-ir) in the VMH of all genotypes, but was maximal in brains of wild-type and ER,KO females. Analysis of specific VMH subregions revealed that PR-ir induction was limited to the caudal VMH in ER,KO and ER,,KO mice. In the rostral VMH, oestradiol only induced PR-ir in wild-type and ER,KO mice, and the number of PR-ir neurones in this region was greater in ER,KO than wild-type females. Next, we tested the ability of a dopamine agonist and progesterone to facilitate sexual behaviour in females lacking functional ER,, ER,, or both receptors. Ovariectomized mice were implanted with oestradiol, and tested for sexual behaviour three times after administration of the dopamine agonist, apomorphine, followed by two tests concurrent with progesterone treatment and a final test with just apomorphine treatment. ER,KO and ER,,KO females failed to display lordosis under any testing conditions, while ER,KO females exhibited lordosis behaviour equal to that of wild-type females. Our data show that a subpopulation of PR-ir neurones is induced by oestradiol in the caudal VMH of female mice lacking both ER, and ER, genes. We hypothesize that this action of oestradiol is either mediated by a novel ER or by the mutant portion of the AF2 subregion of the ER, gene present in ER,KO brain. However, despite the presence of PR in VMH, females lacking a functional ER, gene do not display sexual behaviour, via either ligand-dependent or -independent activation. [source] Developmental toxicity of UV filters and environmental exposure: a reviewINTERNATIONAL JOURNAL OF ANDROLOGY, Issue 2 2008Margret Schlumpf Summary Several ultraviolet (UV) filters exhibit estrogenic, some also anti-androgenic activity. They are present in waste water treatment plants, surface waters and biosphere including human milk, suggesting potential exposure during development. Developmental toxicity was studied in rats for the UV filters 4-methylbenzylidene camphor (4-MBC, 0.7, 7, 24, 47 mg/kg/day) and 3-benzylidene camphor (3-BC, 0.07, 0.24, 0.7, 2.4, 7 mg/kg/day) administered in chow to the parent generation before mating, during pregnancy and lactation, and to the offspring until adulthood. Neonates exhibited enhanced prostate growth after 4-MBC and altered uterine gene expression after both chemicals. 4-MBC and 3-BC delayed male puberty and affected reproductive organ weights of adult offspring. Effects on the thyroid axis were also noted. Expression and oestrogen sensitivity of oestrogen-regulated genes and nuclear receptor coregulator levels were altered at mRNA and protein levels in adult uterus, prostate and brain regions involved in gonadal control and sexual behaviour. Female sexual behaviour was impaired by both filters; 3-benzylidene camphor caused irregular cycles. Classical endpoints exhibited lowest observed adverse effect levels (LOAELs) and no observed adverse effect levels (NOAELs) of 7/0.7 mg/kg for 4-MBC and 0.24/0.07 mg/kg for 3-BC. Molecular endpoints were affected by the lowest doses studied. Our data indicate that the potential risk posed by endocrine active UV filters warrants further investigations. [source] GPR30 Differentially Regulates Short Latency Responses of Luteinising Hormone and Prolactin Secretion to OestradiolJOURNAL OF NEUROENDOCRINOLOGY, Issue 9 2009D. Lebesgue Rapid, nongenomic actions of 17,-oestradiol (E2) on hypothalamic neurones that may be relevant to reproductive function were described decades ago. The orphan G protein-coupled receptor, GPR30, was recently shown to bind oestrogens and to trigger rapid signalling in vitro, and is expressed in several rat and human brain regions, including the hypothalamus. We used two complementary approaches to investigate the role of GPR30 in hypothalamic responses to E2 that are relevant to reproductive physiology. Serial blood sampling after the acute administration of the selective GPR30 agonist G1 was used to assess the role of GPR30 in short latency negative-feedback inhibition of luteinising hormone (LH) secretion and facilitation of prolactin secretion in ovariohysterectomised female rats. In vivo RNA interference (RNAi), mediated by adeno-associated virus-expressing small hairpin RNA (shRNA) infused into the mediobasal hypothalamus, was used to study the effects of GPR30 knockdown on these rapid responses to E2. Longer-term actions of E2 on female sexual behaviour (lordosis) were also examined in female rats subjected to in vivo RNAi. Administration of E2 or G1 triggered a short latency surge of prolactin secretion, and animals subjected to GPR30 RNAi showed significantly less E2 -dependent prolactin release than animals receiving control virus. G1 did not mimic E2 negative-feedback inhibition of LH secretion, and GPR30 RNAi did not interfere with E2 suppression of LH or facilitation of lordosis behaviour. These findings suggest that activation of GPR30 promotes short latency prolactin secretion but does not mediate E2 negative-feedback inhibition of LH secretion or E2 facilitation of female reproductive behaviour. [source] Exposure to Oestrogen Prenatally Does Not Interfere with the Normal Female-Typical Development of Odour PreferencesJOURNAL OF NEUROENDOCRINOLOGY, Issue 5 2007J. Bakker The neural mechanisms controlling mate recognition and heterosexual partner preference are sexually differentiated by perinatal actions of sex steroid hormones. We previously showed that the most important action of oestrogen during prenatal development is to defeminise and, to some extent, masculinise brain and behaviour in mice. Female mice deficient in alpha-foetoprotein (AFP) due to a targeted mutation in the Afp gene (AFP-KO) do not show any female sexual behaviour when paired with an active male because they lack the protective action of AFP against maternal oestrogens. In the present study, we investigated whether odour preferences, another sexually differentiated trait in mice, are also defeminised and/or masculinised in AFP-KO females due to their prenatal exposure to oestrogens. AFP-KO females of two background strains (CD1 and C57Bl/6j) preferred to investigate male over female odours when given the choice between these two odour stimuli in a Y-maze, and thus remained very female-like in this regard. Thus, the absence of lordosis behaviour in these females cannot be explained by a reduced motivation of AFP-KO females to investigate male-derived odours. Furthermore, the presence of a strong male-directed odour preference in AFP-KO females suggests a postnatal contribution of oestrogens to the development of preferences to investigate opposite-sex odours. [source] Noradrenergic Innervation of the Ventromedial Hypothalamus is Involved in Mating-Induced Pseudopregnancy in the Female RatJOURNAL OF NEUROENDOCRINOLOGY, Issue 8 2006L. E. Northrop The ventromedial hypothalamus (VMH) is an oestrogen-responsive area known to facilitate female sexual behaviour in the rat. The VMH is innervated by noradrenergic neurones projecting from the brain stem, and it has been demonstrated that noradrenaline receptor activation in the VMH plays a role in the expression of the lordosis reflex. Noradrenaline has been shown to be released within the VMH after a female receives vaginocervical stimulation (VCS) from the male during mating. VCS also is required to induce twice-daily surges of prolactin (PRL) characteristic of early pregnancy or pseudopregnancy (PSP). To determine whether noradrenaline within the ventrolateral ventromedial hypothalamus (VMHvl) plays a facilitatory role in initiation of PSP, we administered the ,1 -noradrenergic receptor agonist, phenylephrine, and the ,2 -autoreceptor antagonist, yohimbine, unilaterally into the VMHvl. Phenylephrine stimulated PSP in 85.7% of females given an amount of VCS known to be subthreshold for the induction of PSP, whereas saline infusion (0%) or cannula misplacement (7.7%) were ineffective. Yohimbine had a similar effect, inducing PSP in 85.7% of females, whereas 7.6% of both control groups together showed PSP. Finally, bilateral blockade of ,1 -receptors using prazosin blocked PSP in 100% of females given sufficient VCS to induce PSP, whereas saline infusion or misplaced intracerebral cannulae failed to prevent PSP in any animal. In all experiments, vaginal dioestrous was indicative of PSP, in that animals showed a mean number of days between oestrus of 12.8 ± 0.9. The results of the study demonstrate an important role for the VMHvl in initiation of PSP and suggest that the release of noradrenaline in the VMHvl at the time of mating contributes to neuroendocrine mechanisms responsible for establishing PSP in the female rat. [source] Response to Male Odours in Progestin Receptor- and Oestrogen Receptor-Containing Cells in Female Rat BrainJOURNAL OF NEUROENDOCRINOLOGY, Issue 6 2002A. L. Bennett Abstract Sensory cues from male rats, such as odours and vaginal-cervical stimulation (VCS), play a modulatory role in female rat sexual behaviour. For example, exposure to male odours and VCS appears to be at least partially responsible for increases in sexual behaviour following repeated mating of oestradiol-primed female rats. Although there is evidence that VCS influences sexual behaviour via a ligand-independent progestin receptor (PR)-dependent mechanism, the mechanism by which odours influence sexual behaviour is not known. We tested the hypothesis that, similar to VCS, the effects of male odours on sexual behaviour are mediated by progestin receptors. Female rats were injected with the progestin antagonist, RU486, or oil vehicle and were then exposed to male-soiled bedding or clean bedding. Although exposure to male-soiled bedding resulted in higher levels of Fos immunoreactivity in brain areas associated with female sexual behaviour, the progestin antagonist did not reduce this effect. Furthermore, there was minimal coexpression of odour-induced Fos and progestin receptors in brain areas associated with female sexual behaviour. Together, these results suggest that the effects of male odours are not mediated by a PR-dependent mechanism. Therefore, we tested the hypothesis that oestrogen receptor (ER)-containing cells are involved in the effects of olfactory cues. Although there was virtually no coexpression of ER, and odour-induced Fos in brain areas associated with female sexual behaviour, exposure to male odours slightly increased the number of cells coexpressing ER, and odour-induced Fos in the posterodorsal medial amygdala. Although, these results do not support the hypothesis that the effects of odours are mediated by a PR-dependent mechanism, they suggest that integration of male odours and hormonal cues may occur in ER,-containing cells in the posterodorsal medial amygdala. [source] Serotonergic Neurones in the Dorsal Raphe Nucleus That Project into the Medial Preoptic Area Contain Oestrogen Receptor ,JOURNAL OF NEUROENDOCRINOLOGY, Issue 10 2001H. Lu Abstract Serotonin is involved in female sexual behaviour in which the medial preoptic area (MPA) has a pivotal role. The present study used immunohistochemistry, in situ hybridization and retrograde transport analysis to investigate whether serotonin neurones in the dorsal raphe nucleus (DRN) of females projecting into the MPA contained oestrogen receptor , or ,. The projection of serotonin neurones from the DRN to the MPA was confirmed using the microinjection of Fluoro-Gold (FG), a fluorescent retrograde tracer, into the MPA of ovariectomized (OVX-group) and OVX-rats treated with oestradiol benzoate (E2-group). A number of serotonin neurones in the DRN were labelled with FG, indicating that these serotonin neurones in DRN project their terminals into the MPA. FG-labelled serotonin neurones expressed ER, mRNA in the DRN, and the number of the serotonin neurones containing ER, mRNA between the OVX-group and the E2-treated group was not significantly different. Serotonin neurones in the DRN did not express ER,-immunoreactivity. Since previous findings showed that the density of serotonin-immunoreactive fibres and the concentration of serotonin within the MPA was significantly lower in the E2-group than the OVX-group, our present observations suggested that the regulatory effects of E2 on the serotonergic neurone system in the MPA may be via ER, within the serotonin-containing cells in the DRN of female rats. [source] |