Home About us Contact | |||
Female Fecundity (female + fecundity)
Selected AbstractsLife-history strategy in an oligophagous tephritid: the tomato fruit fly, Neoceratitis cyanescensECOLOGICAL ENTOMOLOGY, Issue 4 2008THIERRY BRÉVAULT Abstract 1.,In phytophagous insects, life-history traits mainly depend on host plant range. Substantial longevity, high fecundity and larval competition are the major traits of polyphagous Tephritidae while species with a restricted host range generally exhibit a lower longevity and fecundity as well as mechanisms to avoid larval competition. Our aim in this study was to investigate the life history of an oligophagous species, the tomato fruit fly, Neoceratitis cyanescens (Bezzi). 2.,We determined life tables under laboratory conditions in order to calculate the main demographic parameters of N. cyanescens and studied the influence of larval and adult diet on life-history traits. 3.,The mean longevity of N. cyanescens females was 40 days. There was a strong synchronisation of female maturity. Oviposition showed an early peak at 9,13 days after a short pre-oviposition period (6 days). The absence of proteins in the adult diet both delayed ovarian maturation and decreased female fecundity. In addition, females originating from tomato fruits produced significantly more eggs than females originating from bugweed or black nightshade, showing that even the larval host plant may strongly affect the subsequent fecundity of adult females. 4.,The traits of N. cyanescens are then discussed in the light of those documented for polyphagous and monophagous tephritids. Neoceratitis cyanescens displayed attributes intermediate between those of polyphagous and monophagous tephritids. Its smaller clutch size compared with polyphagous species and its specialisation on the Solanaceae family whose fruits contain toxic compounds may help in reducing intra- and inter-specific competition, respectively. [source] Effect of metanotal secretion ingestion on oviposition in a tree cricket, Truljalia hibinonis (Orthoptera: Gryllidae)ENTOMOLOGICAL SCIENCE, Issue 1 2004Tomohiro ONO Abstract The female Truljalia hibinonis ingests metanotal secretions of the male during copulation. The effect of ingestion on oviposition behavior was compared between three female groups: females that copulated once with an intact male (a male that had not been manipulated; M group); females that copulated once with a male from which most of the metanotal secretion had been removed (NO group); and females that copulated once with an intact male followed by being artificially supplied with metanotal secretion three times (MS group). There were no obvious differences in female fecundity across the three groups. However, within the MS group, intake of an optimal amount of metanotal secretion increased the number of eggs laid. This effect appeared quickly after ingestion and was most effective on the first bout (eggs laid during the first few days after copulation) after ingestion of the metanotal secretion. In contrast, the number of eggs laid had a negative correlation with the amount of metanotal secretion ingested when the amount exceeded the optimal in this experimental arrangement. [source] Differential Sperm Priming by Male Sailfin Mollies (Poecilia latipinna): Effects of Female and Male SizeETHOLOGY, Issue 3 2004Andrea S. Aspbury Recent interest in sperm competition has led to a re-evaluation of the ,cheap sperm' assumption inherent in many studies of sexual selection. In particular, mounting evidence suggests that male sperm availability can be increased by the presence of females. However, there is little information on how this interacts with male traits presumably affected by female mate choice, such as larger size. This study examines the effects on male sperm availability of female presence, male body size, and female body size in the sailfin molly, Poecilia latipinna. Individual males of variable body sizes were isolated in divided tanks for 3 d, after which time either a female or no female was added to the other side of the tank. Prior to the treatments, larger males had more stripped sperm than smaller males. Female presence significantly increased the amount of sperm males primed, but this effect was strongest in small males. Furthermore, males showed a greater priming response in the presence of larger females than in the presence of smaller females. These results demonstrate that the presence of sexually mature females increases the amount of sperm males have for insemination. Furthermore, traits that indicate female fecundity may be used by males as cues in male mate choice. [source] AGE-SPECIFIC GENETIC AND MATERNAL EFFECTS IN FECUNDITY OF PREINDUSTRIAL FINNISH WOMENEVOLUTION, Issue 9 2008Jenni E. Pettay A population's potential for evolutionary change depends on the amount of genetic variability expressed in traits under selection. Studies attempting to measure this variability typically do so over the life span of individuals, but theory suggests that the amount of additive genetic variance can change during the course of individuals' lives. Here we use pedigree data from historical Finns and a quantitative genetic framework to investigate how female fecundity, throughout an individual's reproductive life, is influenced by "maternal" versus additive genetic effects. We show that although maternal effects explain variation in female fecundity early in life, these effects wane with female age. Moreover, this decline in maternal effects is associated with a concomitant increase in additive genetic variance with age. Our results thus highlight that single over-lifetime estimates of trait heritability may give a misleading view of a trait's potential to respond to changing selection pressures. [source] MATING DENSITY AND THE STRENGTH OF SEXUAL SELECTION AGAINST DELETERIOUS ALLELES IN DROSOPHILA MELANOGASTEREVOLUTION, Issue 4 2008Nathaniel P. Sharp Deleterious alleles constantly enter populations via mutation. Their presence reduces mean fitness and may threaten population persistence. It has been suggested that sexual selection may be an efficient way by which deleterious alleles are removed from populations but there is little direct experimental evidence. Because of its potential role in mutational meltdowns, there is particular interest in whether the strength of sexual selection changes with density. For each of eight visible markers in Drosophila melanogaster we have compared the strength of sexual selection at two densities. We find evidence of strong sexual selection against most but not all of these alleles. There is no evidence that sexual selection tends to be stronger (or weaker) at high density relative to low density. In addition, we also measure the effects of these mutations on two key parameters relevant to population productivity,juvenile viability and female fecundity. In most cases, sexual selection is as strong or stronger than these other forms of selection. [source] EVOLUTION UNDER RELAXED SEXUAL CONFLICT IN THE BULB MITE RHIZOGLYPHUS ROBINIEVOLUTION, Issue 9 2006Magdalena Tilszer Abstract The experimental evolution under different levels of sexual conflict have been used to demonstrate antagonistic coevolution in muscids, but among other taxa a similar approach has not been employed. Here, we describe the results of 37 generations of evolution under either experimentally enforced monogamy or polygamy in the bulb mite Rhizoglyphus robini. Three replicates were maintained for each treatment. Monogamy makes male and female interests congruent; thus selection is expected to decrease harmfulness of males to their partners. Our results were consistent with this prediction in that females from monogamous lines achieved lower fecundity when housed with males from polygamous lines. Fecundity of polygamous females was not affected by mating system under which their partners evolved, which suggests that they were more resistant to male-induced harm. As predicted by the antagonistic coevolution hypothesis, the decrease in harmfulness of monogamous males was accompanied by a decline in reproductive competitiveness. In contrast, female fecundity and embryonic viability, which were not expected to be correlated with male harmfulness, did not differ between monogamous and polygamous lines. None of the fitness components assayed differed between individuals obtained from crosses between parents from the same line and those obtained from crosses between parents from different lines within the same mating system. This indicates that inbreeding depression did not confound our results. However, interpretation of our results is complicated by the fact that both males and females from monogamous lines evolved smaller body size compared to individuals from polygamous lines. Although a decrease in reproductive performance of males from monogamous lines was still significant when body size was taken into account, we were not able to separate the effects of male body size and mating system in their influence on fecundity of their female partners. [source] CHARACTER DISPLACEMENT AS THE "BEST OF A BAD SITUATION": FITNESS TRADE-OFFS RESULTING FROM SELECTION TO MINIMIZE RESOURCE AND MATE COMPETITIONEVOLUTION, Issue 10 2005Karin S. Pfennig Abstract Character displacement has long been considered a major cause of adaptive diversification. When species compete for resources or mates, character displacement minimizes competition by promoting divergence in phenotypes associated with resource use (ecological character displacement) or mate attraction (reproductive character displacement). In this study, we investigated whether character displacement can also have pleiotropic effects that lead to fitness trade-offs between the benefits of avoiding competition and costs accrued in other fitness components. We show that both reproductive and ecological character displacement have caused spadefoot toads to evolve smaller body size in the presence of a heterospecific competitor. Although this shift in size likely arose as a by-product of character displacement acting to promote divergence between species in mating behavior and larval development, it concomitantly reduces offspring survival, female fecundity, and sexual selection on males. Thus, character displacement may represent the "best of a bad situation" in that it lessens competition, but at a cost. Individuals in sympatry with the displaced phenotype will have higher fitness than those without the displaced trait because they experience reduced competition, but they may have reduced fitness relative to individuals in allopatry. Such a fitness trade-off can limit the conditions under which character displacement evolves and may even increase the risk of "Darwinian extinction" in sympatric populations. Consequently, character displacement may not always promote diversification in the manner that is often expected. [source] POLYANDRY PROMOTES ENHANCED OFFSPRING SURVIVAL IN DECORATED CRICKETSEVOLUTION, Issue 1 2005Tracie M. Ivy Abstract Although female multiple mating is ubiquitous in insects, its adaptive significance remains poorly understood. Benefits to multiple mating can accrue via direct material benefits, indirect genetic benefits, or both. We investigated the effects of multiple mating in the decorated cricket, Gryllodes sigillatus, by simultaneously varying the number of times that females mated and the number of different males with which they mated, measuring aspects of female fecundity and elements of offspring performance and viability. Multiple matings resulted in enhanced female fitness relative to single matings when females mated with differnt partners, but not when females mated repeatedly with the same male. Specifically, polyandrous females produced significantly more offspring surviving to reproductive maturity than did monogamous females mating once or mating repeatedly with the same male. These results suggest that the benefit females gain from multiple mating is influenced primarily by genetic and not material benefits. [source] NUPTIAL GIFTS AND THE EVOLUTION OF MALE BODY SIZEEVOLUTION, Issue 3 2002Kenneth M. Fedorka Abstract In many insect systems, males donate nuptial gifts to insure an effective copulation or as a form of paternal investment. However, if gift magnitude is both body size-limited and positively related to fitness, then the opportunity exists for the gift to promote the evolution of large male size. In the striped ground cricket, Allonemobius socius, males transfer a body size-limited, somatic nuptial gift that is comprised primarily of hemolymph. To address the implications of this gift on male size evolution, we quantified the intensity and direction of natural (fecundity) and sexual (mating success) selection over multiple generations. We found that male size was under strong positive sexual selection throughout the breeding season. This pattern of selection was similar in successive generations spanning multiple years. Male size was also under strong natural selection, with the largest males siring the most offspring. However, multivariate selection gradients indicated that gift size, and not male size, was the best predictor of female fecundity. In other words, direct fecundity selection for larger gifts placed indirect positive selection on male body size, supporting the hypothesis that nuptial gifts can influence the evolution of male body size in this system. Although female size was also under strong selection due to a size related fecundity advantage, it did not exceed selection on male size. The implications of these results with regard to the maintenance of the female-biased size dimorphic system are discussed. [source] Temperature and host species affect nuptial gift size in a seed-feeding beetleFUNCTIONAL ECOLOGY, Issue 6 2006C. W. FOX Summary 1In many insects species, males contribute large nutritional gifts to females during mating, generally as seminal fluids (ejaculates) or spermatophores. These nuptial gifts can affect both male and female fitness, and can mediate selection on male body size. However, it is unclear how environmental variables, such as temperature and diet, affect gift size and the consequences of gift size for male and female fitness. 2We examine how temperature and rearing host affect male nuptial gift size (both total ejaculate size and the proportion of a male's mass allocated to his seminal fluids), and the relationship between gift size and female reproduction, in two populations of the seed-feeding beetle Callosobruchus maculatus. 3Males reared at lower temperature (20 °C) produced substantially larger ejaculates than males reared at higher temperatures (25, 30 and 35 °C). However, males allocated a smaller proportion of their body mass to their ejaculate at the lowest temperature compared with other temperatures. This effect of temperature on male allocation to their ejaculates mirrored the effect of temperature on female body size , male ejaculate size remained a relatively constant proportion of their mate's body mass across temperatures. 4Rearing host also affected male ejaculate size but the magnitude and direction of the host effect differed between populations. 5Rearing temperature affected the relationship between male body mass and ejaculate size. Temperature also affected the relationship between female body mass and fecundity. The relationship between male body mass and ejaculate size was significantly lower when beetles were reared on cowpea than when beetles were reared on azuki or mung. 6We found no evidence that male body size or nuptial gift size affected female fecundity in either population of C. maculatus. We thus propose that the effect of nuptial gift size on male fitness is through a reduction in female mating frequency and thus increased paternity for males producing larger nuptial gifts. [source] Attraction and fecundity of adult codling moth, Cydia pomonella, as influenced by methoxyfenozide-treated electrostatic powderJOURNAL OF APPLIED ENTOMOLOGY, Issue 9-10 2009J. Huang Abstract The attractiveness and responsiveness of adult codling moths, Cydia pomonella (L.), exposed to EntostatTM powder with or without the ecdysteroid agonist, methoxyfenozide, were investigated in a flight tunnel. Coating males with either EntostatTM powder alone or powder plus methoxyfenozide 1 or 24 h prior to flight tunnel assays did not influence the mean percentages of males successfully orienting to a female-equivalent lure relative to unexposed control moths. The fecundity of females paired with males exposed to EntostatTM powder plus methoxyfenozide was significantly lower than that for females paired with unexposed males. This reduction in egg output was similar to that observed when methoxyfenozide-treated females were paired with untreated males, indicating that males can successfully pass methoxyfenozide to their partners during copulation. However, EntostatTM powder alone carried by male moths did not affect female fecundity after mating. EntostatTM powder has the potential to carry pesticides for C. pomonella control by autodissemination. [source] Morph-ratio variation, population size and female reproductive success in distylous Pulmonaria officinalis (Boraginaceae)JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 5 2008R. BRYS Abstract Theory predicts that morph ratios in heterostylous populations are governed by negative frequency-dependent selection typically resulting in equal morph ratios at equilibrium. Previous work on the distylous perennial herb Pulmonaria officinalis, however, showed asymmetric mating between floral morphs and a weak self-incompatibility system, with the long-styled morph (L-morph) producing significantly higher seed set following intramorph crosses and even selfing than the short-styled morph (S-morph), two aspects thought to affect female fecundity and morph-ratio variation. Here, we evaluated morph ratios and population size of all known P. officinalis populations in the northern part of Belgium. Morph ratios deviated significantly from 1 : 1 (range 0.09,1 L-morph frequency, mean = 0.58). Relative fecundity of the S-morph (i.e. mean seed set of the S-morph/mean seed set of the L-morph) was on average 0.73, was positively related to the frequency of the L-morph, and reached 1 (similar levels of female fecundity) at an average L-morph frequency of 0.66 in the population. As some small populations had the S-morph in majority, our results suggest that local morph ratios are influenced both by the relative fecundity of L- and S-morph individuals and by stochastic processes in small populations. [source] The evolution of repeated mating under sexual conflictJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 1 2005R. Härdling Abstract In insects, repeated mating by females may have direct effects on female fecundity, fertility, and longevity. In addition, a female's remating rate affects her fitness through mortality costs of male harassment and ecological risks of mating such as predation. We analyse a model where these female fitness factors are put into their life-history context, and traded against each other, while accounting for limitations because of mate availability. We solve analytically for the condition when female multiple mating will evolve. We show that the probability that a female mates with a courting male decreases with increases in population density. The extent of conflict between the sexes thus automatically becomes larger at higher densities. However, because at higher densities females meet males at a higher rate, the resulting ESS female remating rate is independent of population density. The female remating probability is in conflict with male adaptations that increase male mating rate by persuading or forcing females to mate, and also in conflict with male adaptations for protecting the own sperm from being removed by future female mates. We show that the relative importance of these conflicts depends on population density. [source] What maintains noncytoplasmic incompatibility inducing Wolbachia in their hosts: a case study from a natural Drosophila yakuba populationJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 2 2004S. Charlat Abstract Cytoplasmic incompatibility (CI) allows Wolbachia to invade hosts populations by specifically inducing sterility in crosses between infected males and uninfected females. In some species, non-CI inducing Wolbachia, that are thought to derive from CI-inducing ancestors, are common. In theory, the maintenance of such infections is not possible unless the bacterium is perfectly transmitted to offspring - and/or provides a fitness benefit to infected females. The present study aims to test this view by investigating a population of Drosophila yakuba from Gabon, West Africa. We did not find any evidence for CI using wild caught females. Infected females from the field transmitted the infection to 100% of their offspring. A positive effect on female fecundity was observed one generation after collecting, but this was not retrieved five generations later, using additional lines. Similarly, the presence of Wolbachia was found to affect mating behaviour, but the results of two experiments realized five generations apart were not consistent. Finally, Wolbachia was not found to affect sex ratio. Overall, our results would suggest that Wolbachia behaves like a neutral or nearly neutral trait in this species, and is maintained in the host by perfect maternal transmission. [source] Inbreeding depression by recessive deleterious genes affecting female fecundity of a haplo-diploid miteJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 4 2000Saito The effect of inbreeding on haplo-diploid organisms has been regarded as very low, because deleterious recessive genes on hemizygous (haploid) males were immediately purged generation by generation. However, we determined such recessive genes to decrease female fecundity in a population of Schizotetranychus miscanthi Saito which is known in the Acari as a subsocial species with haplo-diploidy. In mother,son inbreeding experiments, there was no depression in egg hatchability nor in the larval survival of progeny over four generations. There was, on the other hand, significant inbreeding depression in the fecundity with increasing f -value. Crosses between two lineages, one having deleterious effects on the fecundity and the other having no such effects, established during the inbreeding, revealed heterosis, and backcrosses showed that the depression was caused by deleterious recessive(s). These results strongly suggest the existence of some deleterious genes governing only the traits of adult females in wild populations of haplo-diploid organisms. [source] Yellow belly as honest signal of female quality in Knipowitschia panizzae(Gobiidae)JOURNAL OF FISH BIOLOGY, Issue 2003C. Mazzoldi Sexually dimorphic traits are common in fish species, and examples from both males and females have been described. The function of these traits has been widely investigated in males. On the contrary, female ornaments have been studied mainly in sex role reversed species, such as pipefish, while their role in species with ,conventional' sex roles remain to be investigated. This study focused on the presence, function, and possible role as indicator of female quality of a sexually dimorphic nuptial trait in the lagoon goby, Knipowitschia panizzae. In this species, that present conventional sex roles, females show a yellow spot on the belly. Aquarium spawning experiments demonstrated that the coloration on the belly is due to dermal pigments, is displayed only when female is ready to spawn and is switched off within few minutes from the end of egg deposition. This sexual trait presents variability in size among females and indicates female fecundity relatively to her own body size. As a consequence, female yellow belly appears to be an honest signal of female quality. Field data on natural nests highlighted that males perform parental cares mostly only on one egg batch at a time and the modality of egg deposition suggested that males are limited in their potential reproductive rates by environmental factors. Male limitation in egg care could constitute the basis for a female biased operational sex ratio, favouring male choosiness and the evolution of female nuptial displays. [source] Male body size predicts sperm number in the mandarinfishJOURNAL OF ZOOLOGY, Issue 3 2010M. B. Rasotto Abstract Theory predicts that, in species with non-resource-based mating systems, female preference for male sexual traits might be selected to ensure higher levels of fertility. Accordingly, secondary sexual traits used by females to assess males are expected to covary with ejaculate size and/or quality transferred during copulation, and female fecundity should be directly linked to mating with more attractive males. To date, direct tests of this hypothesis have been performed on internal fertilizing species, where several factors, such as for instance sperm competition, cryptic female choice, male parasite load, may affect ejaculate characteristics and female fecundity. Here, we used as a model the mandarinfish Synchiropus splendidus a small pelagic spawner where males only provide females with ejaculates and sperm competition does not occur. Males are significantly larger than females and we experimentally demonstrated that females prefer larger males. In addition, by collecting gametes from 67 natural spawning events, we attained a measure of the number of eggs and sperm released in each spawning event and the fertilization rates. The mean number of gametes produced positively correlates with body size in both sexes. Males do not regulate sperm number according to egg number and/or female body size. Fertilization success is significantly related to the mean number of sperm released but not directly to male body size. These findings, despite not fully accomplishing theoretical expectation, suggest that larger and more fecund females may suffer sperm limitation in mating with smaller males. In addition, our results have possible implications for the aquarium fishery of this species, which targets large males. [source] Effect of pyriproxyfen, a juvenile hormone mimic, on egg hatch, nymph development, adult emergence and reproduction of the Asian citrus psyllid, Diaphorina citri KuwayamaPEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 4 2010Dhana Raj Boina Abstract BACKGROUND: The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is a vector of bacteria presumably responsible for huanglongbing (HLB) disease in citrus. In this laboratory study, an investigation was made of the activity of pyriproxyfen, a juvenile hormone mimic, on ACP eggs, nymphs and adults to evaluate its potential as a biorational insecticide for inclusion in an integrated pest management (IPM) program for ACP. RESULTS: Irrespective of egg age, timing or method of treatment, a significantly lower percentage of eggs (5,29%) hatched after exposure to 64 and 128 µg mL,1 of pyriproxyfen. Only 0,36% of early instars (first, second and third) and 25,74% of late instars (fourth and fifth) survived to adults following exposure to 16, 32 and 64 µg mL,1 of pyriproxyfen. However, 15,20% of adults that emerged following treatment as late instars exhibited morphological abnormalities. Furthermore, pyriproxyfen adversely affected reproduction (fecundity and fertility) of adults that emerged from treated fifth instars or that were treated topically with 0.04 µg as adults. CONCLUSIONS: Application of pyriproxyfen at 64 µg mL,1 resulted in greater inhibition of egg hatch and suppression of adult emergence compared with lower rates. Pyriproxyfen also markedly reduced female fecundity and egg viability for adults that were exposed either as fifth instars or as newly emerged adults. The ovicidal, larvicidal and reproductive effects against ACP suggest that pyriproxyfen is suitable for integration into an IPM program for ACP. Copyright © 2009 Society of Chemical Industry [source] Sperm-limited fecundity and polyandry-induced mortality in female nematodes Caenorhabditis remaneiBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 2 2010S. ANAID DIAZ In many sexually reproducing species, females are sperm limited and actively mate more than once which can lead to sperm competition between males. However, the costs and benefits of multiple matings may differ for males and females leading to different optimal mating frequencies and consequent sexual conflict. Under these circumstances, male traits that reduce females' re-mating rates are likely to evolve. However, the same traits can also reduce, directly or indirectly, female survival and/or manipulate female fecundity. Evidence of this sexual conflict is common across several taxa. Here, we examine the evidence for this form of conflict in the free-living nematodes of the Caenorhabditis genus. Members of this group are extensively used to describe developmental and physiological processes. Despite this, we understand little about the evolution of selfing, maintenance of males and sexual conflict in these species, particularly those with gonochoristic mating strategies. In this study, we demonstrate experimentally sexual conflict in the gonochoristic of C. remanei cultured under laboratory conditions. In our first experiment, we found that female fecundity increased with the number of males present which suggests that females' reproduction may be sperm limited. However, increasing the number of males present also reduced female survival. A second experiment ruled out the alternative explanation of density-dependent reduction in female survival when more males were present as increasing female density correspondingly did not affect female survival. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99, 362,369. [source] The evolution of male mate choice in insects: a synthesis of ideas and evidenceBIOLOGICAL REVIEWS, Issue 3 2001RUSSELL BONDURIANSKY ABSTRACT Mate choice by males has been recognized at least since Darwin's time, but its phylogenetic distribution and effect on the evolution of female phenotypes remain poorly known. Moreover, the relative importance of factors thought to underlie the evolution of male mate choice (especially parental investment and mate quality variance) is still unresolved. Here I synthesize the empirical evidence and theory pertaining to the evolution of male mate choice and sex role reversal in insects, and examine the potential for male mating p to generate sexual selection on female phenotypes. Although male mate choice has received relatively little empirical study, the available evidence suggests that it is widespread among insects (and other animals). In addition to ,precopulatory' male mate choice, some insects exhibit ,cryptic' male mate choice, varying the amount of resources allocated to mating on the basis of female mate quality. As predicted by theory, the most commonly observed male mating p are those that tend to maximize a male's expected fertilization success from each mating. Such p tend to favour female phenotypes associated with high fecundity or reduced sperm competition intensity. Among insect species there is wide variation in mechanisms used by males to assess female mate quality, some of which (e.g. probing, antennating or repeatedly mounting the female) may be difficult to distinguish from copulatory courtship. According to theory, selection for male choosiness is an increasing function of mate quality variance and those reproductive costs that reduce, with each mating, the number of subsequent matings that a male can perform (,mating investment'). Conversely, choosiness is constrained by the costs of mate search and assessment, in combination with the accuracy of assessment of potential mates and of the distribution of mate qualities. Stronger selection for male choosiness may also be expected in systems where female fitness increases with each copulation than in systems where female fitness peaks at a small number of matings. This theoretical framework is consistent with most of the empirical evidence. Furthermore, a variety of observed male mating p have the potential to exert sexual selection on female phenotypes. However, because male insects typically choose females based on phenotypic indicators of fecundity such as body size, and these are usually amenable to direct visual or tactile assessment, male mate choice often tends to reinforce stronger vectors of fecundity or viability selection, and seldom results in the evolution of female display traits. Research on orthopterans has shown that complete sex role reversal (i.e. males choosy, females competitive) can occur when male parental investment limits female fecundity and reduces the potential rate of reproduction of males sufficiently to produce a female-biased operational sex ratio. By contrast, many systems exhibiting partial sex role reversal (i.e. males choosy and competitive) are not associated with elevated levels of male parental investment, reduced male reproductive rates, or reduced male bias in the operational sex ratio. Instead, large female mate quality variance resulting from factors such as strong last-male sperm precedence or large variance in female fecundity may select for both male choosiness and competitiveness in such systems. Thus, partial and complete sex role reversal do not merely represent different points along a continuum of increasing male parental investment, but may evolve via different evolutionary pathways. [source] |