Female Behavior (female + behavior)

Distribution by Scientific Domains


Selected Abstracts


Effects of Male Vocal Learning on Female Behavior in the Budgerigar, Melopsittacus undulatus

ETHOLOGY, Issue 10 2005
Arla G. Hile
Parrots are unusual among birds and animals in general in the extent of their ability to learn new vocalizations throughout life and irrespective of season. The budgerigar (Melopsittacus undulatus), a small parrot that is well suited for laboratory studies, has been the subject of numerous studies investigating the neurobiology of vocal learning. To date, few studies have focused on the function of vocal imitation by parrots. Previous work from our research group has shown that vocal imitation in budgerigars is sex-biased, as males paired with females learn vocalizations from their new mates, but not vice versa. This bias led us to hypothesize that vocal learning has a reproductive function. To test this hypothesis, we conducted two experiments. In the first experiment, we tutored males so that they could produce a call similar to one shared by a group of experimental females. The experimental females were then presented with one of the tutored males and another, equally unfamiliar, male that had not been tutored. We found that the females spent a greater proportion of time in proximity of, and made more affiliative displays toward, the tutored males. In the second experiment, seven males received small bilateral brain lesions that disrupt vocal learning. These males and an equal number of control males were then released into an aviary containing females and reproductive resources. We found that lesioned and control males were equally successful in obtaining social mates, but females mated to lesioned males were more likely to engage in extra-pair activities. These experiments indicate that a male's ability to imitate a female's call can influence the sexual behavior of the female even though lack of imitation ability does not appear to influence social pairing. We hypothesize that mate choice in budgerigars has multiple stages. Upon meeting a strange male, a female quickly assesses its ability for social acquisition of calls by the presence or absence of a call type similar to its own in its repertoire. As courtship proceeds into pair formation, the female assesses the ability of male to learn more directly by the extent of the male's perfection of imitation. [source]


SEXUALLY TRANSMITTED DISEASE AND THE EVOLUTION OF MATING SYSTEMS

EVOLUTION, Issue 6 2002
Hanna Kokko
Abstract ., Sexually transmitted diseases (STDs) have been shown to increase the costs of multiple mating and therefore favor relatively monogamous mating strategies. We examine another way in which STDs can influence mating systems in species in which female choice is important. Because more popular males are more likely to become infected, STDs can counteract any selective pressure that generates strong mating skews. We build two models to investigate female mate choice when the sexual behavior of females determines the prevalence of infection in the population. The first model has no explicit social structure. The second model considers the spatial distribution of matings under social monogamy, when females mated to unattractive males seek extrapair fertilizations from attractive males. In both cases, the STD has the potential to drastically reduce the mating skew. However, this reduction does not always happen. If the per contact transmission probability is low, the disease dies out and is of no consequence. In contrast, if the transmission probability is very high, males are likely to be infected regardless of their attractiveness, and mating with the most attractive males imposes again no extra cost for the female. We also show that optimal female responses to the risk of STDs can buffer the prevalence of infection to remain constant, or even decrease, with increasing per contact transmission probabilities. In all cases considered, the feedback between mate choice strategies and STD prevalence creates frequency-dependent fitness benefits for the two alternative female phenotypes considered (choosy vs. randomly mating females or faithful vs. unfaithful females). This maintains mixed evolutionarily stable strategies or polymorphisms in female behavior. In this way, a sexually transmitted disease can stabilize the populationwide proportion of females that mate with the most attractive males or that seek extrapair copulations. [source]


Female receptivity phenotype of icebox mutants caused by a mutation in the L1-type cell adhesion molecule neuroglian

GENES, BRAIN AND BEHAVIOR, Issue 8 2005
A. Carhan
Relatively little is known about the genes and brain structures that enable virgin female Drosophila to make the decision to mate or not. Classical genetic approaches have identified several mutant females that have a reluctance-to-mate phenotype, but most of these have additional behavioral defects. However, the icebox (ibx) mutation was previously reported to lower the sexual receptivity of females, without apparently affecting any other aspect of female behavior. We have shown that the ibx mutation maps to the 7F region of the Drosophila X chromosome to form a complex complementation group with both lethal and viable alleles of neuroglian (nrg). The L1-type cell adhesion molecule encoded by nrg consists of six immunoglobulin-like domains, five fibronectin-like domains, one transmembrane domain and one alternatively spliced intracellular domain. The ibx strain has a missense mutation causing a glycine-to-arginine change at amino acid 92 in the first immunoglobulin domain of nrg. Defects in the central brain of ibx mutants are similar to those observed in another nrg mutant, central brain deranged1 (ceb1). However, both ceb1 homozygous and ceb1/ibx heterozygous females are receptive. The expression of a transgene containing the non-neural isoform of nrg rescues both the receptivity and the brain structure phenotypes of ibx females. [source]


Dominance rank reversals and rank instability among male Lemur catta: The effects of female behavior and ejaculation

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 3 2009
Joyce A. Parga
Abstract In this study, dominance rank instability among male Lemur catta during mating was investigated. Also, data on agonism and sexual behavior across five consecutive mating seasons in a population of L. catta on St. Catherines Island, USA, were collected. Instances of male rank instability were categorized into three types. Type 1 consisted of a temporary switch in the dominance ranks of two males, which lasted for a period of minutes or hours. Type 2 dyadic male agonistic interactions showed highly variable outcomes for a period of time during which wins and losses were neither predictable nor consistent. Type 3 interactions consisted of a single agonistic win by a lower-ranked male over a more dominant male. More Type 2 interactions (indicating greater dominance instability) occurred when males had not spent the previous mating season in the same group, but this trend was not statistically significant. The majority of periods of male rank instability were preceded by female proceptivity or receptivity directed to a lower-ranked male. As such, exhibition of female mate choice for a lower-ranking male appeared to incite male,male competition. Following receipt of female proceptivity or receptivity, males who were lower-ranking took significantly longer to achieve their first agonistic win over a more dominant male than did males who were higher-ranked. Ejaculation frequently preceded loss of dominance. In conclusion, temporary rank reversals and overall dominance rank instability commonly occur among male L. catta in mating contexts, and these temporary increases in dominance status appear to positively affect male mating success. Am J Phys Anthropol, 2009. © 2008 Wiley-Liss, Inc. [source]


Relationship between sexual interactions and the timing of the fertile phase in captive female Japanese macaques (Macaca fuscata)

AMERICAN JOURNAL OF PRIMATOLOGY, Issue 10 2009
Cécile Garcia
Abstract Japanese macaques live in multi-male/multi-female social groups in which competition between males, female mate choice, and alternative male mating strategies are important determinants of mating and reproductive success. However, the extent to which adult males rely on female behavior to make their mating decisions as well as the effect of social rank on mating success are not clear as results are inconclusive, varying from study to study. In this study, we combined behavioral and endocrine data of 14 female Japanese macaques to examine the relationship between ovarian cycle phase and frequency of sexual behaviors, and to investigate how social rank influences sexual behavior in this species. We found that there was no increase in female proceptive behaviors during the fertile phase of the ovarian cycle, suggesting that female behaviors did not clearly signal the probability of conception. In spite of that, the frequencies of ejaculatory copulations were highest during this phase, indicating that the attractivity of females increased significantly during the period with higher probability of conception. Males, and especially the highest ranking male, were able to discriminate females nearing ovulation and to concentrate their mating effort, implying that the timing of ovulation was not concealed from them. The , male seemed able to monopolize most female matings, which is probably due in part to the low number of females simultaneously ovulating and to the limited number of inconspicuous places that the lower ranking males have to mate with females and avoid , male aggression. All together, these results suggest that different males may have access to different signals of ovulation and/or are differentially restrained as to how they can act on that information. The exact nature of the estrogen-related cues males use to recognize female reproductive status, and to what extent males use them warrants further investigation. Am. J. Primatol. 71:868,879, 2009. © 2009 Wiley-Liss, Inc. [source]


Female sex pheromone suppression and the fate of sex-peptide-like peptides in mated moths of Helicoverpa armigera

ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 3 2007
V.K. Nagalakshmi
Abstract Insect males produce accessory gland (MAG) factors that are transferred in the seminal fluid to females during copulation, and elicit changes in the mated female's behavior and physiology. Our previous studies showed that the injection of synthetic Drosophila melanogaster sex-peptide (DrmSP) into virgin females of the moth Helicoverpa armigera causes a significant inhibition of pheromone production. In this and other moth species, pheromone production, correlated with female receptivity, is under neuroendocrine control due to the circadian release of the neuropeptide PBAN. In this study, we show that PBAN, present in the hemolymph during the scotophase in females, is drastically reduced after mating. We also identify 4 DrmSP-like HPLC peaks (Peaks A, S1, S2, and B) in MAGs, with increasing levels of DrmSP immunoreactivity during the scotophase, when compared to their levels observed during the photophase. In H. armigera MAGs, a significant reduction in the pheromonostatic peak (Peak B) was already evident after 15 min of copulation, and depletion of an additional peak (Peak S2) was evident after complete mating. Peak A is also detected in female brains, increasing significantly 1 h after mating, at which time inhibition of pheromone biosynthesis also occurs. However, changes corresponding to the other MAG peaks were not detected in mated female tissues. Arch. Insect Biochem. Physiol. 64:142,155, 2007. © 2007 Wiley-Liss, Inc. [source]