Fed Ad Libitum (fed + ad_libitum)

Distribution by Scientific Domains


Selected Abstracts


Gut size in GH-transgenic coho salmon is enhanced by both the GHtransgene and increased food intake

JOURNAL OF FISH BIOLOGY, Issue 6 2005
E. D. Stevens
Growth hormone transgenic coho salmon Oncorhynchus kisutch fed at the same ration level as non-transgenic controls (Tc) had the same growth rate as non-transgenic controls (Nt). In contrast, growth hormone transgenic coho salmon (Tf) fed ad libitum ate about twice as much and had much higher growth rates than the other two groups. The most obvious result was the significantly larger caeca in the Tf group relative to both Nt or pair-fed Tc. The Tf fish had more caeca that were longer. The results suggested that the effect was indirect and the enlarged caeca required both the GHtransgene and hyperphagia to cause enlarged caecal capacity. A small part of the results, however, also suggested that there was a direct effect of the GHtransgene on some gut tissues, particularly the intestine. [source]


Effect of cycles of feed deprivation on growth and food consumption of immature three-spined sticklebacks and European minnows

JOURNAL OF FISH BIOLOGY, Issue 1 2003
L. Wu
Individual juvenile three-spined sticklebacks Gasterosteus aculeatus and European minnow Phoxinus phoxinus, from sympatric populations, were subjected to four cycles of 1 week of food deprivation and 2 weeks of ad libitum feeding. Mean specific growth rate during the weeks of deprivation was negative and did not differ between species. The three-spined stickleback showed sufficient growth compensation to recover to the growth trajectory shown by control fish daily fed ad libitum. The compensation was generated by hyperphagia during the re-feeding periods, and in the last two periods of re-feeding, the gross growth efficiencies of deprived three-spined sticklebacks were greater than in control fish. The expression of the compensatory changes in growth and food consumption became clearer over the successive periods of re-feeding. The European minnow developed only a weak compensatory growth response and the mass trajectory of the deprived fish deviated more and more from the control trajectory. During re-feeding periods, there were no significant differences in food consumption or gross growth efficiency between control and deprived European minnows. The differences between the two species are discussed in terms of the possible costs of compensatory growth, the control of growth and differences in feeding biology. [source]


The turnover of the H3 deuterons from (2- 13C) glutamate and (2- 13C) glutamine reveals subcellular trafficking in the brain of partially deuterated rats

JOURNAL OF NEUROCHEMISTRY, Issue 2009
Sebastián Cerdán
Abstract We investigated by 13C NMR the turnover of the H3 deuterons of (2- 13C) glutamate and (2- 13C) glutamine in the brain of partially deuterated rats. Adult animals (150,200 g) fed ad libitum received 50%2H2O or tap water 9 days before infusing (1- 13C) glucose or (2- 13C) acetate for 5, 10, 15, 30, 60, or 90 min. The brains were then funnel-frozen and acid extracts were prepared and analyzed by high-resolution 13C NMR. The deuteration of one or the two H3 hydrogens of (2- 13C) glutamate or glutamine resulted in single (,0.07 ppm) or double (,0.14 ppm) isotopic shifts upfield of the corresponding C2 perprotonated resonance, demonstrating two sequential deuteration steps. The faster monodeuteration generated 3R or 3S (2- 13C, 3- 2H) glutamate or glutamine through the alternate activities of cerebral aconitase or isocitrate dehydrogenase, respectively. The slower process produced bideuterated (2- 13C, 3,3,- 2H2) glutamate or glutamine through the consecutive activity of both enzymes. The kinetics of deuteration was fitted to a Michaelis,Menten model including the apparent Km, and Vmax, values for the observed deuterations. Our results revealed different kinetic constants for the alternate and consecutive deuterations, suggesting that these processes were caused by the different cytosolic or mitochondrial isoforms of aconitase and isocitrate dehydrogenase, respectively. The deuterations of (2- 13C) glutamate or glutamine followed also different kinetics from (1- 13C) glucose or (2- 13C) acetate, revealing distinct deuteration environments in the neuronal or glial compartments. [source]


Moderate Alcohol Consumption Aggravates High-Fat Diet Induced Steatohepatitis in Rats

ALCOHOLISM, Issue 3 2010
Yan Wang
Background:, Nonalcoholic steatohepatitis (NASH) develops in the absence of chronic and excessive alcohol consumption. However, it remains unknown whether moderate alcohol consumption aggravates liver inflammation in pre-existing NASH condition. Methods:, Sprague-Dawley rats were first fed ad libitum with Lieber-DeCarli high-fat diet (71% energy from fat) for 6 weeks to induce NASH, as demonstrated previously. Afterwards, these rats were continuously fed with high-fat diet (HFD, 55% total energy from fat) or high fat plus alcohol diet (HFA, 55% energy from fat and 16% energy from alcohol) for an additional 4 weeks. Pathological lesions including fat accumulation and inflammatory foci in liver were examined and graded. Lipid peroxidation and apoptotic hepatocytes in the liver were assessed. The mRNA expressions of tumor necrosis factor-, (TNF,) and TNF receptor 1 (TNF-R1), Fas death receptor (Fas) and Fas ligant (FasL), IL-1, and IL-12 were determined by real-time PCR. Protein levels of total and cleaved caspase-3, CYP2E1, Bax, and Bcl-2 were measured by western blotting. Results:, The number of hepatic inflammatory foci and apoptotic hepatocytes were significantly increased in rats fed with HFA as compared with those in HFD-fed rats. The aggravated inflammatory response and cellular apoptosis mediated by HFA were associated with elevated mRNA expression of Fas/FasL and cleaved caspase-3 protein. Although no significant differences were observed between HFD and HFA groups, the levels of lipid peroxidation, Bax and Bcl-2 protein concentration, and mRNA levels of other inflammatory cytokines were significantly higher in these 2 groups than those in the control group. Conclusions:, These data suggest that even moderate alcohol consumption can cause more hepatic inflammation and cellular apoptosis in a pre-existing NASH condition. [source]


Enhanced plasma and target tissue availabilities of albendazole and albendazole sulphoxide in fasted calves: evaluation of different fasting intervals

JOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 4 2000
S. SÁNCHEZ
The influence of different pre- and post-treatment fasting periods on the plasma availability and disposition kinetics of albendazole (ABZ) and its sulphoxide metabolite (ABZSO) in cattle was investigated. The effect of fasting on the distribution of ABZ and ABZSO to different target tissues/fluids was also characterised. In Experiment I, 35 parasite-free Holstein calves were divided into seven groups according to the following feeding conditions and treated intraruminally with ABZ (10 mg/kg): control group (fed ad libitum), 24 h fasting either prior to (24 h pre-) or post (24 h post-) treatment, 24 h fasting with either 6 (6 h pre+18 h post) or 12 h (12 h pre+12 h post-) of feed restriction prior to treatment, 12 h fasting either prior to (12 h pre-) or post (12 h post) treatment. In Experiment II, calves from the same pool of animals were subjected to a 24 h fasting period prior to the same ABZ treatment and killed (two animals) at either 24, 36 or 48 h post-administration to obtain samples of abomasal/intestinal mucosa and fluid contents, bile and lungs. Plasma (Experiment I) and tissues/fluids (Experiment II) samples were analysed by HPLC. All the fasting periods investigated induced marked changes to the plasma availability and disposition kinetics of the ABZSO metabolite. Enhanced plasma availability between 37 and 118%, delayed peak concentrations and extended mean residence times for ABZSO were observed in fasted compared to fed calves. The changes in plasma kinetics, reflecting an altered quantitative gastrointestinal absorption, were reflected in increased availability of ABZ and ABZSO in the target tissues/fluids of fasted calves. The availabilities of ABZ and ABZSO in the gastrointestinal mucosa and fluids in fasted calves were markedly greater than in those fed ad libitum. [source]


Effect of food restriction on ghrelin in adult male rats and its relation to male reproductive hormones

ANDROLOGIA, Issue 2 2010
H. M. Abou Heif
Summary Ghrelin is an endogenous ligand for growth hormone secretagogue (GHS) receptor (GHS-R). It has recently emerged as an orexigenic food intake controlling signal acting upon hypothalamic centres. To study the effect of food restriction on ghrelin level and its relation to male reproductive hormones, 32 adult male albino rats divided into two groups: Group I (8 rats as a control group) fed ad libitum for 21 days and 24 rats as Group II (food-restricted group) fed 30% of ad libitum intake of food consumed by the control group. Rats were weighed every 3 days. Group II rats were further subdivided into three subgroups: IIa, IIb and IIc that were killed at days 8, 16 and 21 from the start of food restriction respectively. Ghrelin level was assayed by ELISA technique in serum samples and tissue homogenates prepared from the stomach and hypothalamus. In addition, male reproductive hormones: testosterone, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were assayed in serum by chemiluminescence. Mean body weight of food restricted rats was observed to decrease during the period of the experiment. Food restriction produced a significant increase of serum ghrelin and a significant decrease of both gastric and hypothalamic ghrelin in group II when compared with group I. The changes in ghrelin level varied with the duration of food restriction. Significant inverse correlation was found between serum ghrelin and each of gastric and hypothalamic ghrelin in group II. A significant decrease of testosterone, FSH and LH were found in food restricted rats compared with controls. The decrease was significantly related to the duration of food restriction. Significant inverse correlation was detected between serum ghrelin and each of the male reproductive hormones in food restricted group II rats. Thus ghrelin could be one of the hormones responsible for the suppression of male reproductive axis in case of negative energy balance. [source]


Effects of intrauterine undernutrition on the expression of CYP3A23/3A1, PXR, CAR and HNF4, in neonate rats

BIOPHARMACEUTICS AND DRUG DISPOSITION, Issue 9 2008
Shaoqing Ni
Abstract Cytochrome P-450 3A (CYP3A) together with its nuclear receptors plays a critical role in drug metabolism. The present study investigated the effects of undernutrition in utero on hepatic mRNA and protein expression of the enzyme CYP3A23/3A1 and nuclear receptors including pregnane X receptor (PXR; NR1I2), constitutive androstane receptor (CAR; NR1I3) and nuclear factor-4alpha (HNF4,; HNF4A) in neonatal rats. At gestational day 2, pregnant rats were randomly divided into two groups: nourished (fed ad libitum) and undernourished (50% of nourished group). The pups delivered by nourished rats were designated as the normal-birth-weight group (NBW, n=15) and those delivered by undernourished rats were designated as the low-birth-weight group (LBW, n=15). Hepatic mRNA expression was detected by quantitative real-time PCR and the corresponding protein expression was examined by immunohistochemistry (IHC). Compared with NBW pups, LBW pups tended to have lower mRNA expression levels of CYP3A23/3A1, PXR and CAR but higher levels of HNF4,. Only the CAR mRNA expression differences were significant (p<0.05). mRNA expression of CYP3A23/3A1 correlated with that of HNF4, in both the LBW(r=0.808, p=0.007) and NBW (r=0.452, p=0.012) groups. CYP3A23/3A1 and CAR protein expression differed between the two groups (CYP3A23/3A1, ,2=7.87, p=0.005; CAR, ,2=12.069, p=0.001). In conclusion, these findings suggest that undernutrition may influence the mRNA expression of CAR and protein expression of both CYP3A23/3A1 and CAR in neonatal rats. Since CYP3A23/3A1 and CAR are critically involved in drug metabolism, these results may have clinical implications for optimal medication in LBW children. Copyright © 2008 John Wiley & Sons, Ltd. [source]