Fe/Mn Ratios (fe + ratio)

Distribution by Scientific Domains


Selected Abstracts


Spectral models for solar-scaled and ,-enhanced stellar populations

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2007
P. Coelho
ABSTRACT We present the first models allowing one to explore in a consistent way the influence of changes in the ,-element-to-iron abundance ratio on the high-resolution spectral properties of evolving stellar populations. The models cover the wavelength range from 3000 to 1.34 ,m at a constant resolution of full width at half-maximum (FWHM) = 1 and a sampling of 0.2 , for overall metallicities in the range 0.005 ,Z, 0.048 and for stellar population ages between 3 and 14 Gyr. These models are based on a recent library of synthetic stellar spectra and a new library of stellar evolutionary tracks, both computed for three different iron abundances ([Fe/H]=,0.5, 0.0 and 0.2) and two different ,-element-to-iron abundance ratios ([,/Fe]= 0.0 and 0.4). We expect our fully synthetic models to be primarily useful for evaluating the differential effect of changes in the ,/Fe ratio on spectral properties such as broad-band colours and narrow spectral features. In addition, we assess the accuracy of absolute model predictions in two ways: first, by comparing the predictions of models for scaled-solar metal abundances ([,/Fe]= 0.0) to those of existing models based on libraries of observed stellar spectra; and secondly, by comparing the predictions of models for ,-enhanced metal abundances ([,/Fe]= 0.4) to observed spectra of massive early-type galaxies in the Sloan Digital Sky Survey Data Release 4. We find that our models predict accurate strengths for those spectral indices that are strongly sensitive to the abundances of Fe and , elements. The predictions are less reliable for the strengths of other spectral features, such as those dominated by the abundances of C and N, as expected from the fact that the models do not yet allow one to explore the influence of these elements in an independent way. We conclude that our models are a powerful tool for extracting new information about the chemical properties of galaxies for which high-quality spectra have been gathered by modern surveys. [source]


X-ray evidence for multiphase hot gas with nearly solar Fe abundances in the brightest groups of galaxies

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2000
David A. Buote
We analyse the ASCA spectra accumulated within ,100 kpc radii of 12 of the brightest groups of galaxies. Upon fitting isothermal models (1T) jointly to the ASCA SIS and GIS spectra we obtain fits for most groups that are of poor or at best marginal quality and give very subsolar metallicities similar to previous studies, ,Z,=0.290.12 Z,. Two-temperature models (2T) provide significantly better fits for 11 out of the 12 groups, and in every case have metallicities that are substantially larger than obtained for the 1T models, ,Z,=0.750.24 Z,. Though not very well constrained, for most of the groups absorption in excess of the Galactic value is indicated for the cooler temperature component of the 2T models. A simple multiphase cooling flow model gives results analogous to the 2T models including large metallicities, ,Z,=0.650.17 Z,. The nearly solar Fe abundances and also solar ,/Fe ratios indicated by the 2T and cooling flow models are consistent with models of the chemical enrichment of ellipticals, groups, and clusters which assume ratios of Type Ia to Type II supernovae and an initial mass function (IMF) similar to those of the Milky Way. Thus we have shown that the very subsolar Fe abundances and Si/Fe enhancements obtained from most previous studies within r,100 kpc of galaxy groups are an artefact of fitting isothermal models to the X-ray spectra, which also has been recently demonstrated for the brightest elliptical galaxies. Owing to the importance of these results for interpreting X-ray spectra, in an appendix we use simulated ASCA observations to examine in detail the ,Fe bias' and ,Si bias' associated with the spectral fitting of ellipticals, groups and clusters of galaxies. [source]


Analysis of ordinary chondrites using powder X-ray diffraction: 2.

METEORITICS & PLANETARY SCIENCE, Issue 1 2010
Applications to ordinary chondrite parent-body processes
Several observations indicate that oxidation may have occurred during progressive metamorphism of equilibrated chondrites, including systematic changes with petrologic type in XRD-derived olivine and low-Ca pyroxene abundances, increasing ratios of MgO/(MgO+FeO) in olivine and pyroxene, mean Ni/Fe and Co/Fe ratios in bulk metal with increasing metamorphic grade, and linear Fe addition trends in molar Fe/Mn and Fe/Mg plots. An aqueous fluid, likely incorporated as hydrous silicates and distributed homogeneously throughout the parent body, was responsible for oxidation. Based on mass balance calculations, a minimum of 0.3,0.4 wt% H2O reacted with metal to produce oxidized Fe. Prior to oxidation the parent body underwent a period of reduction, as evidenced by the unequilibrated chondrites. Unlike olivine and pyroxene, average plagioclase abundances do not show any systematic changes with increasing petrologic type. Based on this observation and a comparison of modal and normative plagioclase abundances, we suggest that plagioclase completely crystallized from glass by type 4 temperature conditions in the H and L chondrites and by type 5 in the LL chondrites. Because the validity of using the plagioclase thermometer to determine peak temperatures rests on the assumption that plagioclase continued to crystallize through type 6 conditions, we suggest that temperatures calculated using pyroxene goethermometry provide more accurate estimates of the peak temperatures reached in ordinary chondrite parent bodies. [source]


Rare Earth, Major and Trace Elements in the Kunimiyama Ferromanganese Deposit in the Northern Chichibu Belt, Central Shikoku, Japan

RESOURCE GEOLOGY, Issue 4 2005
Yasuhiro Kato
Abstract. Rare earth, major and trace element geochemistry is reported for the Kunimiyama stratiform ferromanganese deposit in the Northern Chichibu Belt, central Shikoku, Japan. The deposit immediately overlies greenstones of mid-ocean ridge basalt (MORB) origin and underlies red chert. The ferromanganese ores exhibit remarkable enrichments in Fe, Mn, P, V, Co, Ni, Zn, Y and rare earth elements (excepting Ce) relative to continental crustal abundance. These enriched elements/ Fe ratios and Post-Archean Average Australian Shale-normalized REE patterns of the ferromanganese ores are generally analogous to those of modern hydrothermal ferromanganese plume fall-out precipitates deposited on MOR flanks. However in more detail, Mn and Ti enrichments in the ferromanganese ores are more striking than the modern counterpart, suggesting a significant contribution of hydrogenetic component in the Kunimiyama ores. Our results are consistent with the interpretation that the Kunimiyama ores were umber deposits that primarily formed by hydrothermal plume fall-out precipitation in the Panthalassa Ocean during the Early Permian and then accreted onto the proto-Japanese island arc during the Middle Jurassic. The presence of strong negative Ce anomaly in the Kunimiyama ores may indicate that the Early Permian Panthalassa seawater had a more striking negative Ce anomaly due to a more oxidizing oceanic condition than today. [source]


Surface podzolization in Cambisols under deciduous forest in the Belgian loess belt

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 1 2000
V. Brahy
Summary Surface podzolization involves the migration of metal,humus complexes to a depth of a few centimetres. In acid soils derived from loess, this process has been diagnosed mainly by morphological observation. We investigated this process in a toposequence of Luvisols and Cambisols on loess using selective extraction and mineralogical data as well as characteristics of the leaf litter. The humus type (O and OAh horizons) is a moder in the three Luvisols and one of the Cambisols, whereas it is a fibrimor in the two other Cambisols. The contents in total alkaline and alkaline-earth cations range from 35 to 60 cmolc kg,1 in the fibrimor and from 40 to 90 cmolc kg,1 in the moder humus. In the two Cambisols with fibrimor smectite occurs in the clay fraction of the Ah horizon; Fe,humus complexes seem to have moved, but no more than 9 cm, from the Ah to the AB horizon beneath. Relative to the Ah horizon, the upper part of the AB has larger tetraborate-extractable Fe/Al ratio and optical density of the oxalate extract. Such features converge to diagnose surface podzolization in the Cambisols with fibrimor. However, they were not detected in the Cambisol and Luvisols with moder. In the two Cambisols with fibrimor, surface podzolization is consistent with (i) their smaller iron content, (ii) their more advanced weathering stage and (iii) their lower acid neutralizing capacity. [source]


Northwest Africa 011: A "eucritic" basalt from a non-eucrite parent body

METEORITICS & PLANETARY SCIENCE, Issue 3 2005
Christine Floss
This meteorite bears many similarities to the eucrites it was initially identified with, although oxygen isotopic compositions rule out a genetic relationship. Like many eucrites, NWA 011 crystallized from a source with approximately chondritic proportions of REE, although a slightly LREE-enriched bulk composition with a small positive Eu anomaly, as well as highly fractionated Fe/Mg ratios and depleted Sc abundances (Korotchantseva et al. 2003), suggest that the NWA 011 source experienced some pyroxene and/or olivine fractionation. Thermal metamorphism resulted in homogenization of REE abundances within grains, but NWA 011 did not experience the intergrain REE redistribution seen in some highly metamorphosed eucrites. Despite a similarity in oxygen isotopic compositions, NWA 011 does not represent a basaltic partial melt from the acapulcoite/lodranite parent body. The material from which NWA 011 originated may have been like some CH or CB chondrites, members of the CR chondrite clan, which are all related through oxygen isotopic compositions. The NWA 011 parent body is probably of asteroidal origin, possibly the basaltic asteroid 1459 Magnya. [source]


Ibitira: A basaltic achondrite from a distinct parent asteroid and implications for the Dawn mission

METEORITICS & PLANETARY SCIENCE, Issue 5 2005
David W. MITTLEFEHLDT
The mean Fe/Mn ratio of pyroxenes in Ibitira with <10 mole% wollastonite component is 36.4 0.4; this value is well resolved from those of similar pyroxenes in five basaltic eucrites studied for comparison, which range from 31.2 to 32.2. Data for the latter five eucrites completely overlap. Ibitira pyroxenes have lower Fe/Mg than the basaltic eucrite pyroxenes; thus, the higher Fe/Mn ratio does not reflect a simple difference in oxidation state. Ibitira also has an oxygen isotopic composition, alkali element contents, and a Ti/Hf ratio that distinguish it from basaltic eucrites. These differences support derivation from a distinct parent asteroid. Thus, Ibitira is the first recognized representative of the fifth known asteroidal basaltic crust, the others being the HED, mesosiderite, angrite, and NWA 011 parent asteroids. 4 Vesta is generally assumed to be the HED parent asteroid. The Dawn mission will orbit 4 Vesta and will perform detailed mapping and mineralogical, compositional, and geophysical studies of the asteroid. Ibitira is only subtly different from eucritic basalts. A challenge for the Dawn mission will be to distinguish different basalt types on the surface and to attempt to determine whether 4 Vesta is indeed the HED parent asteroid. [source]


Petrography, mineralogy, and trace element geochemistry of lunar meteorite Dhofar 1180

METEORITICS & PLANETARY SCIENCE, Issue 9 2009
Aicheng Zhang
Dhofar 1180 is predominantly composed of fine-grained matrix with abundant mineral fragments and a few lithic and glassy clasts. Lithic clasts show a variety of textures including cataclastic, gabbroic, granulitic, ophitic/subophitic, and microporphyritic. Both feldspathic and mafic lithic clasts are present. Most feldspathic lithic clasts have a strong affinity to ferroan anorthositic suite rocks and one to magnesian suite rocks. Mafic lithic clasts are moderately to extremely Fe-rich. The Ti/[Ti+Cr]-Fe/[Fe+Mg] compositional trend of pyroxenes in mafic lithic clasts is consistent with that of low-Ti mare basalts. Glasses display a wide chemical variation from mafic to feldspathic. Some glasses are very similar to those from Apollo 16 soils. KREEP components are essentially absent in Dhofar 1180. One glassy clast is rich in K, REE and P, but its Mg/[Mg+Fe] is very low (0.25). It is probably a last-stage differentiation product of mare basalt. Molar Fe/Mn ratios of both olivine and pyroxene are essentially consistent with a lunar origin. Dhofar 1180 has a LREE-enriched (La 18 CI, Sm 14 CI) pattern with a small positive Eu anomaly (Eu 15 CI). Th concentration is 0.7 ppm in Dhofar 1180. Petrography, mineralogy, and trace element geochemistry of Dhofar 1180 are different from those of other lunar meteorites, indicating that Dhofar 1180 represents a unique mingled lunar breccia derived from an area on the lunar nearside but far away from the center of the Imbrium Basin. [source]


Petrology, Mineralogy and Geochemisty of Antarctic Mesosiderite GRV 020175: Implications for Its Complex Formation History

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2010
Linyan WANG
Abstract: GRV 020175 is an Antarctic mesosiderite, containing about 43 vol% silicates and 57 vol% metal. Metal occurs in a variety of textures from irregular large masses, to veins penetrating silicates, and to matrix fine grains. The metallic portion contains kamacite, troilite and minor taenite. Terrestrial weathering is evident as partial replacement of the metal and troilite veins by Fe oxides. Silicate phases exhibit a porphyritic texture with pyroxene, plagioclase, minor silica and rare olivine phenocrysts embedded in a fine-grained groundmass. The matrix is ophitic and consists mainly of pyroxene and plagioclase grains. Some orthopyroxene phenocrysts occur as euhedral crystals with chemical zoning from a magnesian core to a ferroan overgrowth; others are characterized by many fine inclusions of plagioclase composition. Pigeonite has almost inverted to its orthopyroxene host with augite lamellae, enclosed by more magnesian rims. Olivine occurs as subhedral crystals, surrounded by a necklace of tiny chromite grains (about 2,3 ,m). Plagioclase has a heterogeneous composition without zoning. Pyroxene geothermometry of GRV 020175 gives a peak metamorphic temperature (,1000C) and a closure temperature (,875C). Molar Fe/Mn ratios (19,32) of pyroxenes are consistent with mesosiderite pyroxenes (16,35) and most plagioclase compositions (An87.5,96.6) are within the range of mesosiderite plagioclase grains (An88,95). Olivine composition (Fo53.8) is only slightly lower than the range of olivine compositions in mesosiderites (Fo55,90). All petrographic characteristics and chemical compositions of GRV 020175 are consistent with those of mesosiderite and based on its matrix texture and relatively abundant plagioclase, it can be further classified as a type 3A mesosiderite. Mineralogical, petrological, and geochemical studies of GRV 020175 imply a complex formation history starting as rapid crystallization from a magma in a lava flow on the surface or as a shallow intrusion. Following primary igneous crystallization, the silicate underwent varying degrees of reheating. It was reheated to 1000C, followed by rapid cooling to 875C. Subsequently, metal mixed with silicate, during or after which, reduction of silicates occurred; the reducing agent is likely to have been sulfur. After redox reaction, the sample underwent thermal metamorphism, which produced the corona on the olivine, rims on the inverted pigeonite phenocrysts and overgrowths on the orthopyroxene phenocrysts, and homogenized matrix pyroxenes. Nevertheless, metamorphism was not extensive enough to completely reequilibrate the GRV 020175 materials. [source]


Reversible Low-Field Magnetoresistance in Sr2Fe2,xMoxO6,, by Oxygen Cycling and the Role of Excess Mo (x,>,1) in Grain-Boundary Regions

ADVANCED MATERIALS, Issue 7 2006
L. MacManus-Driscoll
Oxygen cycling of Sr2Fe2,xMoxO6,, (SFMO) samples allows the resistivity and low-field magnetoresistance (LFMR) to be precisely cycled. TEM shows that the change in resistivity with oxygen is not only a consequence of the change in oxygen stoichiometry of SFMO, but also a concomitant change in the Fe/Mo ratio in SFMO. The figure shows the change in MR and resistivity (values in m,,cm above the data points for samples D1,D7) with increasing post-annealing time. [source]


The SAURON project , VI.

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2006
Line strength maps of 48 elliptical, lenticular galaxies
ABSTRACT We present absorption line strength maps of 48 representative elliptical and lenticular galaxies obtained as part of a survey of nearby galaxies using our custom-built integral-field spectrograph, SAURON, operating on the William Herschel Telescope. Using high-quality spectra, spatially binned to a constant signal-to-noise ratio, we measure four key age, metallicity and abundance ratio sensitive indices from the Lick/IDS system over a two-dimensional field extending up to approximately one effective radius. A discussion of calibrations and offsets is given, along with a description of error estimation and nebular emission correction. We modify the classical Fe5270 index to define a new index, Fe5270S, which maximizes the useable spatial coverage of SAURON. Maps of H,, Fe5015, Mg b and Fe5270S are presented for each galaxy. We use the maps to compute average line strengths integrated over circular apertures of one-eighth effective radius, and compare the resulting relations of index versus velocity dispersion with previous long-slit work. The metal line strength maps show generally negative gradients with increasing radius roughly consistent with the morphology of the light profiles. Remarkable deviations from this general trend exist, particularly the Mg b isoindex contours appear to be flatter than the isophotes of the surface brightness for about 40 per cent of our galaxies without significant dust features. Generally, these galaxies exhibit significant rotation. We infer from this that the fast-rotating component features a higher metallicity and/or an increased Mg/Fe ratio as compared to the galaxy as a whole. The H, maps are typically flat or show a mild positive outwards radial gradient, while a few galaxies show strong central peaks and/or elevated overall H, strength likely connected to recent star formation activity. For the most prominent post-starburst galaxies, even the metal line strength maps show a reversed gradient. [source]


Combined noble gas and trace element measurements on individual stratospheric interplanetary dust particles

METEORITICS & PLANETARY SCIENCE, Issue 10 2002
K. Kehm
Trace element compositions are generally similar to CI meteorites, with occasional depletions in Zn/Fe with respect to CI. Noble gases were detected in all but one of the IDPs. Noble gas elemental compositions are consistent with the presence of fractionated solar wind. A rough correlation between surface-normalized He abundances and Zn/Fe ratios is observed; Zn-poor particles generally have lower He contents than the other IDPs. This suggests that both elements were lost by frictional heating during atmospheric entry and confirms the view that Zn can serve as an entry-heating indicator in IDPs. [source]