Fe Abundance (fe + abundance)

Distribution by Scientific Domains


Selected Abstracts


Feedback under the microscope , I. Thermodynamic structure and AGN-driven shocks in M87

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2010
E. T. Million
ABSTRACT We present the first in a series of papers discussing the thermodynamic properties of M87 and the central regions of the Virgo Cluster in unprecedented detail. Using a deep Chandra exposure (574 ks), we present high-resolution thermodynamic maps created from the spectra of ,16 000 independent regions, each with ,1000 net counts. The excellent spatial resolution of the thermodynamic maps reveals the dramatic and complex temperature, pressure, entropy and metallicity structure of the system. The ,X-ray arms', driven outwards from M87 by the central active galactic nuclei (AGN), are prominent in the brightness, temperature and entropy maps. Excluding the ,X-ray arms', the diffuse cluster gas at a given radius is strikingly isothermal. This suggests either that the ambient cluster gas, beyond the arms, remains relatively undisturbed by AGN uplift or that conduction in the intracluster medium (ICM) is efficient along azimuthal directions, as expected under action of the heat-flux-driven buoyancy instability (HBI). We confirm the presence of a thick (,40 arcsec or ,3 kpc) ring of high-pressure gas at a radius of ,180 arcsec (,14 kpc) from the central AGN. We verify that this feature is associated with a classical shock front, with an average Mach number M= 1.25. Another, younger shock-like feature is observed at a radius of ,40 arcsec (,3 kpc) surrounding the central AGN, with an estimated Mach number M, 1.2. As shown previously, if repeated shocks occur every ,10 Myr, as suggested by these observations, then AGN-driven weak shocks could produce enough energy to offset radiative cooling of the ICM. A high significance enhancement of Fe abundance is observed at radii 350,400 arcsec (27,31 kpc). This ridge is likely formed in the wake of the rising bubbles filled with radio-emitting plasma that drag cool, metal-rich gas out of the central galaxy. We estimate that at least ,1.0 106 solar masses of Fe has been lifted and deposited at a radius of 350,400 arcsec; approximately the same mass of Fe is measured in the X-ray bright arms, suggesting that a single generation of buoyant radio bubbles may be responsible for the observed Fe excess at 350,400 arcsec. [source]


Abundance analysis of the cool extreme helium star LSS 3378

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2006
Gajendra Pandey
ABSTRACT Abundance analysis of the cool extreme helium (EHe) star LSS 3378 is presented. The abundance analysis is done using local thermodynamic equilibrium (LTE) line formation and LTE model atmospheres constructed for EHe stars. The atmosphere of LSS 3378 shows evidence of H-burning, He-burning, and s -process nucleosynthesis. The derived abundances of iron peak and ,-elements indicate the absence of selective fractionation or any other processes that can distort chemical composition of these elements. Hence, the Fe abundance [log ,(Fe) = 6.1] is adopted as an initial metallicity indicator. The measured abundances of LSS 3378 are compared with those of R Coronae Borealis (RCB) stars and with rest of the EHe stars as a group. [source]


Relativistic ionized accretion disc models of MCG,6-30-15

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2001
D.R. Ballantyne
We present results from fitting of ionized accretion disc models to three long ASCA observations of the Seyfert 1 galaxy MCG,6-30-15. All three data sets can be fitted by a model consisting of ionized reflection from the inner region of the accretion disc (with twice solar Fe abundance) and a separate disc-line component from farther out on the disc. The disc-line is required to fit the height of the observed Fe K, line profile. However, we show that a much simpler model of reflection from a very weakly ionized constant-density disc also fits the data. In this case only a single cold Fe K, line at 6.4 keV is required to fit the observed line. The ionized disc models predict that O viii K,, C vi K,, Fe xvii L, and Fe xviii L, lines will appear in the soft X-ray region of the reflection spectrum, but are greatly blurred as a result of Compton scattering. The equivalent width (EW) of O viii K, is estimated to be about 10 eV and seems to be as strong as the blend of the Fe L lines. This result creates difficulty for the claim of a strong relativistic O viii line in the XMM - Newton grating spectrum of MCG,6-30-15, although we cannot strictly rule it out since MCG,6-30-15 was in an anomalously low state during that observation. We find that increasing the O abundance or breaking the continuum below 2 keV will not significantly strengthen the line. The second Fe K, line component in the ionized disc model may arise from neutral reflection from a flared disc, or from a second illumination event. The data cannot distinguish between the two cases, and we conclude that single-zone ionized disc models have difficulty fitting these hard X-ray data of MCG,6-30-15. [source]


On the evolution of the Fe abundance and of the Type Ia supernova rate in clusters of galaxies

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY: LETTERS (ELECTRONIC), Issue 1 2007
F. Calura
ABSTRACT The study of the Fe abundance in the intracluster medium (ICM) provides strong constraints on the integrated star formation history and supernova rate of the cluster galaxies, as well as on the ICM enrichment mechanisms. In this Letter, using chemical evolution models for galaxies of different morphological types, we study the evolution of the Fe content of clusters of galaxies. We assume that the ICM Fe enrichment occurs by means of galactic winds arising from elliptical galaxies and from gas stripped from the progenitors of S0 galaxies via external mechanisms, due to the interaction of the interstellar medium with the ICM. The Fe-rich gas ejected by ellipticals accounts for the XFe,ICM values observed at z > 0.5, whereas the gas stripped from the progenitors of the S0 galaxies accounts for the increase of XFe,ICM observed at z < 0.5. We test two different scenarios for Type Ia supernova (SN) progenitors and we model the Type Ia SN rate observed in clusters, finding a good agreement between our predictions and the available observations. [source]


X-ray evidence for multiphase hot gas with nearly solar Fe abundances in the brightest groups of galaxies

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2000
David A. Buote
We analyse the ASCA spectra accumulated within ,100 kpc radii of 12 of the brightest groups of galaxies. Upon fitting isothermal models (1T) jointly to the ASCA SIS and GIS spectra we obtain fits for most groups that are of poor or at best marginal quality and give very subsolar metallicities similar to previous studies, ,Z,=0.290.12 Z,. Two-temperature models (2T) provide significantly better fits for 11 out of the 12 groups, and in every case have metallicities that are substantially larger than obtained for the 1T models, ,Z,=0.750.24 Z,. Though not very well constrained, for most of the groups absorption in excess of the Galactic value is indicated for the cooler temperature component of the 2T models. A simple multiphase cooling flow model gives results analogous to the 2T models including large metallicities, ,Z,=0.650.17 Z,. The nearly solar Fe abundances and also solar ,/Fe ratios indicated by the 2T and cooling flow models are consistent with models of the chemical enrichment of ellipticals, groups, and clusters which assume ratios of Type Ia to Type II supernovae and an initial mass function (IMF) similar to those of the Milky Way. Thus we have shown that the very subsolar Fe abundances and Si/Fe enhancements obtained from most previous studies within r,100 kpc of galaxy groups are an artefact of fitting isothermal models to the X-ray spectra, which also has been recently demonstrated for the brightest elliptical galaxies. Owing to the importance of these results for interpreting X-ray spectra, in an appendix we use simulated ASCA observations to examine in detail the ,Fe bias' and ,Si bias' associated with the spectral fitting of ellipticals, groups and clusters of galaxies. [source]