Favourable Habitats (favourable + habitat)

Distribution by Scientific Domains


Selected Abstracts


Loop migration in adult marsh harriers Circus aeruginosus, as revealed by satellite telemetry

JOURNAL OF AVIAN BIOLOGY, Issue 2 2010
Raymond H. G. Klaassen
Loop migration among birds is characterized by the spring route lying consistently west or east of the autumn route. The existence of loops has been explained by general wind conditions or seasonal differences in habitat distribution. Loop migration has predominantly been studied at the population level, for example by analysing ring recoveries. Here we study loop migration of individual marsh harriers Circus aeruginosus tracked by satellite telemetry. We show that despite a generally narrow migration corridor the harriers travelled in a distinct clockwise loop through Africa and southern Europe, following more westerly routes in spring than in autumn. We used the Normalized Difference Vegetation Index (NDVI) to identify potential feeding habitat in Africa. Suitable habitat seemed always more abundant along the western route, both in spring and autumn, and no important stopover site was found along the eastern route. Observed routes did thus not coincide with seasonal variation in habitat availability. However, favourable habitat might be more important during spring migration, when the crossing of the Sahara seems more challenging, and thus habitat availability might play an indirect role in the harriers' route choice. Grid-based wind data were used to reconstruct general wind patterns, and in qualitative agreement with the observed loop marsh harriers predominantly encountered westerly winds in Europe and easterly winds in Africa, both in autumn and in spring. By correlating tail- and crosswinds with forward and perpendicular movement rates, respectively, we show that marsh harriers are partially drifted by wind. Thus, we tentatively conclude that wind rather than habitat seems to have an overriding effect on the shape of the migration routes of marsh harriers. General wind conditions seem to play an important role also in the evolution of narrow migratory loops as demonstrated for individual marsh harriers. [source]


Seed production and population density decline approaching the range-edge of Cirsium species

NEW PHYTOLOGIST, Issue 2 2003
Alistair S. Jump
Summary ,,Patterns in population density and abundance, community composition, seed production and morphological traits were assessed across the UK geographical range of Cirsium acaule, Cirsium heterophyllum and Cirsium arvense based on the expectation that environmental favourability declines from core to periphery of a species range. ,,These traits were measured in natural populations along a latitudinal transect in the UK and using botanical survey data. ,,A significant decline in population density and seed production occurs approaching the range edges of C. acaule and C. heterophyllum. There is no latitudinal trend in these traits in the widespread C. arvense and no latitudinal pattern to variation in morphological traits or community composition in any of these species. ,,Although seed production is reduced at the range edge of C. acaule and C. heterophyllum, peripheral populations of these species may persist through clonal reproduction. Low seed production may interact with reduced availability of favourable habitat to limit range expansion in these species. [source]


The influence of environment and spawning distribution on the survival of anchovy (Engraulis encrasicolus) larvae in the Bay of Biscay (NE Atlantic) investigated by biophysical simulations

FISHERIES OCEANOGRAPHY, Issue 6 2007
GWENHAEL ALLAIN
Abstract A growth and survival model of the early life stages was run along virtual drift trajectories tracked in a hydrodynamic model to simulate the annual recruitment process of anchovy (Engraulis encrasicolus) in the Bay of Biscay (NE Atlantic). These biophysical simulations concerning three different years were analysed in order to investigate the influence of environment and spawning dynamics on the survival of larvae and juveniles. The location of space,time survival windows suggested major environmental mechanisms involved in simulated recruitment variability at the different scales , retention of larvae and juveniles in favourable habitats over the shelf margins and turbulence effects. These small-scale and meso-scale mechanisms were related to the variations in wind direction and intensity during spring and summer. Survival was also variable according to the origin of the drift trajectories, that is spawning distribution in space and time. The observed spawning distribution (according to field surveys) was compared with the spawning distribution that would maximize survival (according to the biophysical model) on a seasonal scale, which revealed factors not considered in the biophysical model (e.g. spawning behaviour of the different age classes). The variation of simulated survival according to spawning distribution was examined on a multi-annual scale and showed a coherent pattern with past and present stock structures. The interaction processes between the population (influence on spawning) and its environment (influence on survival) and its implications on recruitment and stock dynamics are discussed. [source]


Environmental determinants of vascular plant species richness in the Austrian Alps

JOURNAL OF BIOGEOGRAPHY, Issue 7 2005
Dietmar Moser
Abstract Aim, To test predictions of different large-scale biodiversity hypotheses by analysing species richness patterns of vascular plants in the Austrian Alps. Location, The Austrian part of the Alps (c. 53,500 km2). Methods, Within the floristic inventory of Central Europe the Austrian part of the Alps were systematically mapped for vascular plants. Data collection was based on a rectangular grid of 5 × 3 arc minutes (34,35 km2). Emerging species richness patterns were correlated with several environmental factors using generalized linear models. Primary environmental variables like temperature, precipitation and evapotranspiration were used to test climate-related hypotheses of species richness. Additionally, spatial and temporal variations in climatic conditions were considered. Bedrock geology, particularly the amount of calcareous substrates, the proximity to rivers and lakes and secondary variables like topographic, edaphic and land-use heterogeneity were used as additional predictors. Model results were evaluated by correlating modelled and observed species numbers. Results, Our final multiple regression model explains c. 50% of the variance in species richness patterns. Model evaluation results in a correlation coefficient of 0.64 between modelled and observed species numbers in an independent test data set. Climatic variables like temperature and potential evapotranspiration (PET) proved to be by far the most important predictors. In general, variables indicating climatic favourableness like the maxima of temperature and PET performed better than those indicating stress, like the respective minima. Bedrock mineralogy, especially the amount of calcareous substrate, had some additional explanatory power but was less influential than suggested by comparable studies. The amount of precipitation does not have any effect on species richness regionally. Among the descriptors of heterogeneity, edaphic and land-use heterogeneity are more closely correlated with species numbers than topographic heterogeneity. Main conclusions, The results support energy-driven processes as primary determinants of vascular plant species richness in temperate mountains. Stressful conditions obviously decrease species numbers, but presence of favourable habitats has higher predictive power in the context of species richness modelling. The importance of precipitation for driving global species diversity patterns is not necessarily reflected regionally. Annual range of temperature, an indicator of short-term climatic stability, proved to be of minor importance for the determination of regional species richness patterns. In general, our study suggests environmental heterogeneity to be of rather low predictive value for species richness patterns regionally. However, it may gain importance at more local scales. [source]


Isozyme variation and recent biogeographical history of the long-lived conifer Fitzroya cupressoides

JOURNAL OF BIOGEOGRAPHY, Issue 2 2000
A. C. Premoli
Abstract Aim Palaeoenvironmental records of Pleistocene glaciation and associated vegetation changes in Patagonia have led to the hypothesis that during the last glacial maximum (LGM) tree species survived locally in favourable habitats. If present populations originated from spread from only one refugium, such as an ice-free area of coastal Chile (Single Refugium hypothesis), we would expect that eastern populations would be genetically depauperate and highly similar to western populations. In contrast, if the ice cap was not complete and tree species persisted in forest patches on both slopes of the Andes (Multiple Refugia hypothesis), we would expect a greater degree of genetic divergence between populations either on opposite sides of the Cordillera (Cordillera Effect scenario) or towards its present-day southern distributional limit where the ice sheet reached its maximum coverage (Extent-of-the-Ice scenario). Location We tested this refugia hypothesis using patterns of isozyme variation in populations sampled over the entire modern range of the endemic conifer Fitzroya cupressoides (Mol.) Johnst. (Cupressaceae) in temperate South America. Methods Fresh foliage was collected from twenty-four populations and analysed by horizontal electrophoresis on starch gels. Results Twenty-one putative loci were reliably scored and 52% were polymorphic in at least one population. Populations from the eastern slope of the Andes were genetically more variable than those from the western slope; the former had a greater mean number of alleles per locus, a larger total number of alleles and rare alleles, and higher polymorphism. Genetic identities within western populations were greater than within eastern populations. Discriminant analyses using allelic frequencies of different grouping schedules of populations were non significant when testing for the Single Refugium hypothesis whereas significant results were obtained for the Multiple Refugia hypothesis. Main conclusions Our results indicate that present Fitzroya populations are the result of spreading from at least two, but possibly more, glacial refugia located in Coastal Chile and on the southern flanks of the Andes in Argentina. [source]