Home About us Contact | |||
Fatty Acid Synthesis (fatty + acid_synthesis)
Selected AbstractsStructural modification of acyl carrier protein by butyryl groupPROTEIN SCIENCE, Issue 1 2009Bai-Nan Wu Abstract Fatty acid synthesis in bacteria is catalyzed by a set of individual enzymes known as the type II fatty acid synthase. Acyl carrier protein (ACP) shuttles the acyl intermediates between individual pathway enzymes. In this study, we determined the solution structures of three different forms of ACP, apo-ACP, ACP, and butyryl-ACP under identical experimental conditions. The structural studies revealed that attachment of butyryl acyl intermediate to ACP alters the conformation of ACP. This finding supports the more general notion that the attachment of different acyl intermediates alters the ACP structure to facilitate their recognition and turnover by the appropriate target enzymes. [source] Sodium lauryl sulphate alters the mRNA expression of lipid-metabolizing enzymes and PPAR signalling in normal human skin in vivoEXPERIMENTAL DERMATOLOGY, Issue 12 2009Hans Törmä Abstract:, Detergents irritate skin and affect skin barrier homeostasis. In this study, healthy skin was exposed to 1% sodium lauryl sulphate (SLS) in water for 24 h. Biopsies were taken 6 h to 8 days post exposure. Lipid patterns were stained in situ and real-time polymerase chain reaction (PCR) was used to examine mRNA expression of enzymes synthesizing barrier lipids, peroxisome proliferator-activated receptors (PPAR) and lipoxygenases. The lipid pattern was disorganized from 6 h to 3 days after SLS exposure. Concomitant changes in mRNA expression included: (i) reduction, followed by induction, of ceramide-generating ,-glucocerebrosidase, (ii) increase on day 1 of two other enzymes for ceramide biosynthesis and (iii) persistent reduction of acetyl-CoA carboxylase-B, a key enzyme in fatty acid synthesis. Surprisingly, the rate-limiting enzyme in cholesterol synthesis, HMG-CoA reductase, was unaltered. Among putative regulators of barrier lipids synthesis, PPAR, and PPAR, exhibited reduced mRNA expression, while PPAR,/, and LXR, were unaltered. Epidermal lipoxygenase-3, which may generate PPAR, agonists, exhibited reduced expression. In conclusion, SLS induces reorganization of lipids in the stratum corneum, which play a role in detergents' destruction of the barrier. The changes in mRNA expression of enzymes involved in synthesizing barrier lipids are probably important for the restoration of the barrier. [source] Apparent growth phase-dependent phosphorylation of malonyl coenzyme A:acyl carrier protein transacylase (MCAT), a major fatty acid synthase II component in Mycobacterium bovis BCGFEMS MICROBIOLOGY LETTERS, Issue 1 2003Indrajit Sinha Abstract Probing protein extracts from exponentially growing and stationary phase cultures of Mycobacterium bovis BCG with anti-phospho amino acid antibodies revealed a 31-kDa anti-phospho threonine antibody-reactive protein specific to growing culture. The corresponding protein was purified via two-dimensional gel electrophoresis and identified via mass spectrometry to be malonyl coenzyme A:acyl carrier protein transacylase (MCAT), a component of the fatty acid biosynthetic pathway. MCAT tagged with histidine reacted with anti-phospho threonine antibody and was positive in an in-gel chemical assay for phospho proteins. Analysis of the growth phase dependence of MCAT-His phosphorylation and protein levels showed that phosphorylated MCAT-His can be detected only in growing culture. In contrast, MCAT-His protein level was growth phase-independent. These results suggest that MCAT may be a substrate of a protein kinase and phosphatase, and that aspects of fatty acid synthesis in tubercle bacilli are regulated by protein phosphorylation. [source] Modulation of glycosphingolipid metabolism significantly improves hepatic insulin sensitivity and reverses hepatic steatosis in mice,HEPATOLOGY, Issue 5 2009Nora Bijl Nonalcoholic fatty liver disease (NAFLD) is associated with obesity, insulin resistance, and type 2 diabetes. The hyperinsulinemia that occurs as a consequence of insulin resistance is thought to be an important contributor to the development of fatty liver. We have shown that the iminosugar N-(5'-adamantane-1'-yl-methoxy)-pentyl-1-deoxynojirimycin (AMP-DNM), an inhibitor of the enzyme glucosylceramide synthase, is a potent enhancer of insulin signaling in rodent models for insulin resistance and type 2 diabetes. The present study was designed to assess the impact of AMP-DNM on insulin levels, liver triglyceride synthesis, and gene expression profile. Treatment of ob/ob mice with AMP-DNM restored insulin signaling in the liver, corrected blood glucose values to levels found in lean mice, and decreased insulin concentration. The expression of sterol regulatory element-binding protein 1c target genes involved in fatty acid synthesis normalized. AMP-DNM treatment significantly reduced liver to body weight ratio and reversed hepatic steatosis, comprising fat as well as inflammatory markers. In addition, AMP-DNM treatment corrected to a large extent the gene expression profile of ob/ob mice livers toward the profile of lean mice. Conclusion: Pharmacological lowering of glycosphingolipids with the iminosugar AMP-DNM is a promising approach to restore insulin signaling and improve glucose homeostasis as well as hepatic steatosis. (HEPATOLOGY 2009.) [source] Specific role for acyl CoA:Diacylglycerol acyltransferase 1 (Dgat1) in hepatic steatosis due to exogenous fatty acids,HEPATOLOGY, Issue 2 2009Claudio J. Villanueva Nonalcoholic fatty liver disease, characterized by the accumulation of triacylglycerols (TGs) and other lipids in the liver, often accompanies obesity and is a risk factor for nonalcoholic steatohepatitis and fibrosis. To treat or prevent fatty liver, a thorough understanding of hepatic fatty acid and TG metabolism is crucial. To investigate the role of acyl CoA:diacylglycerol acyltransferase 1 (DGAT1), a key enzyme of TG synthesis, in fatty liver development, we studied mice with global and liver-specific knockout of Dgat1. DGAT1 was required for hepatic steatosis induced by a high-fat diet and prolonged fasting, which are both characterized by delivery of exogenous fatty acids to the liver. Studies in primary hepatocytes showed that DGAT1 deficiency protected against hepatic steatosis by reducing synthesis and increasing the oxidation of fatty acids. In contrast, lipodystrophy (aP2-SREBP-1c436) and liver X receptor activation (T0901317), which increase de novo fatty acid synthesis in liver, caused steatosis independently of DGAT1. Pharmacologic inhibition of Dgat1 with antisense oligonucleotides protected against fatty liver induced by a high-fat diet. Conclusion: Our findings identify a specific role for hepatic DGAT1 in esterification of exogenous fatty acids and indicate that DGAT1 contributes to hepatic steatosis induced by this mechanism. (HEPATOLOGY 2009.) [source] Relevance between lipid metabolism-associated genes and rat liver regenerationHEPATOLOGY RESEARCH, Issue 8 2008Cunshuan Xu Aim:, Lipids are important in constituting cell structure and participating in many biological processes, particularly in energy supplementation to cells. The aim of the present study is to elucidate the action of lipid metabolism-associated genes on rat liver regeneration (LR). Methods:, Lipid metabolism-associated genes were obtained by collecting website data and retrieving related articles, and their expression changes in the regenerating rat liver were checked by the Rat Genome 230 2.0 array. Results:, In total, 280 genes involved in lipid metabolism were proven to be LR-associated by comparing the gene expression discrepancy between the partial-hepatectomy and sham-operation groups. The initial and total expression numbers of these genes occurring in the initial phase, G0/G1 transition, cell proliferation, cell differentiation, and structure,functional rebuilding of LR were 128, 33, 135, 6, and 267, 147, 1026, 306, respectively, illustrating that these genes were initially expressed mainly in the initiation stage and functioned in different phases. Upregulation (850 times) and downregulation (749 times), as well as 25 types of expression patterns, showed that the physiological and biochemical activities were diverse and complicated in LR. Conclusion:, According to the results of the chip detection, it was presumed that fatty acid synthesis at 24,66 h, leukotriene and androgen synthesis at 16,168 h, prostaglandin synthesis at 2,96 h, triglyceride synthesis at 18,24 h, glycosphingolipid synthesis at 0.5,66 h, metabolism of phosphatidyl inositol and sphingomyelin at 2,16 h, and cholesterol catabolism at 30,168 h were enhanced. Throughout almost the whole LR, the genes participating in estrogen, glucocorticoid, and progesterone synthesis, and triglyceride catabolism were upregulated, while phospholipid and glycosphingolipid catabolism were downregulated. [source] The influence of dietary linoleic and , -linolenic acid on body composition and the activities of key enzymes of hepatic lipogenesis and fatty acid oxidation in mice,JOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Issue 1-2 2007M. Javadi Summary We have recently suggested that feeding the C18 polyunsaturated fatty acid, , -linolenic acid (ALA), instead of linoleic acid (LA) reduced body fat in mice. However, the difference in body fat did not reach statistical significance, which prompted us to carry out this study using more animals and diets with higher contents of ALA and LA so that the contrast would be greater. The diets contained either 12% (w/w) LA and 3% ALA or 12% ALA and 4% LA. A low-fat diet was used as control. The diets were fed for 35 days. The proportion of body fat was not influenced by the type of dietary fatty acid. Plasma total cholesterol and phospholipids were significantly lower in ALA-fed mice than in mice fed LA. Activities of enzymes in the fatty acid oxidation pathway were significantly raised by these two diets when compared with the control diet. , -Linolenic acid vs. LA did not affect fatty acid oxidation enzymes. In mice fed the diet with LA activities of enzymes of de novo fatty acid synthesis were significantly decreased when compared with mice fed the control diet. , -Linolenic acid vs. LA feeding did not influence lipogenic enzymes. It is concluded that feeding mice for 35 days with diets either rich in LA or ALA did not significantly influence body composition. [source] Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolismMOLECULAR MICROBIOLOGY, Issue 4 2006Aurélia Battesti Summary Bacteria respond to nutritional stresses by producing an intracellular alarmone, guanosine 5,-(tri)diphosphate, 3,-diphosphate [(p)ppGpp], which triggers the stringent response resulting in growth arrest and expression of resistance genes. In Escherichia coli, upon fatty acid or carbon starvation, SpoT enzyme activity switches from (p)ppGpp degradation to (p)ppGpp synthesis, but the signal and mechanism for this response remain totally unknown. Here, we characterize for the first time a physical interaction between SpoT and acyl carrier protein (ACP) using affinity co-purifications and two-hybrid in E. coli. ACP, as a central cofactor in fatty acid synthesis, may be an ideal candidate as a mediator signalling starvation to SpoT. Accordingly, we show that the ACP/SpoT interaction is specific of SpoT and ACP functions because ACP does not interact with the homologous RelA protein and because SpoT does not interact with a non-functional ACP. Using truncated SpoT fusion proteins, we demonstrate further that ACP binds the central TGS domain of SpoT, consistent with a role in regulation. The behaviours of SpoT point mutants that do not interact with ACP reveal modifications of the balance between the two opposite SpoT catalytic activities thereby changing (p)ppGpp levels. More importantly, these mutants fail to trigger (p)ppGpp accumulation in response to fatty acid synthesis inhibition, supporting the hypothesis that the ACP/SpoT interaction may be involved in SpoT-dependent stress response. This leads us to propose a model in which ACP carries information describing the status of cellular fatty acid metabolism, which in turn can trigger the conformational switch in SpoT leading to (p)ppGpp accumulation. [source] A bacterium that has three pathways to regulate membrane lipid fluidityMOLECULAR MICROBIOLOGY, Issue 2 2006John E. Cronan Summary Well-studied bacteria such as Bacillus subtilis and Escherichia coli each have only a single pathway for synthesis of the unsaturated fatty acids required to make functional membrane lipids. In marked contrast, unsaturated fatty acid synthesis in Pseudomonas aeruginosa proceeds by three distinct pathways. [source] Strange organelles ,Plasmodium mitochondria lack a pyruvate dehydrogenase complexMOLECULAR MICROBIOLOGY, Issue 1 2005Stuart A. Ralph Summary Our understanding of the Plasmodium mitochondrion and apicoplast has been greatly assisted by the genome sequence project. Sequence data have seeded recent research showing that the apicoplast is ,the ,site ,of ,several ,anabolic ,pathways ,including fatty acid synthesis. The discovery of an active apicoplast pyruvate dehydrogenase complex implies this enzyme generates the acetyl-CoA needed for fatty acid synthesis. However, the absence of a corresponding mitochondrial complex suggests that energy generation in Plasmodium is considerably different from pathways described in other eukaryotes. [source] Htd2p/Yhr067p is a yeast 3-hydroxyacyl-ACP dehydratase essential for mitochondrial function and morphologyMOLECULAR MICROBIOLOGY, Issue 5 2004Alexander J. Kastaniotis Summary Among the recently recognized aspects of mitochondrial functions, in yeast as well as humans, is their ability to synthesize fatty acids in a malonyl-CoA dependent manner. We describe here the identification of the 3-hydroxyacyl-ACP dehydratase involved in mitochondrial fatty acid synthesis. A colony-colour-sectoring screen was applied in Saccharomyces cerevisiae in a search for mutants that, when grown on a non-fermentable carbon source, were unable to lose a plasmid that carried a chimeric construct coding for mitochondrially localized bacterial analogue. Our mutants, which are respiratory deficient, lack cytochromes and display abnormal mitochondrial morphology,, were, found, to, have, a lesion in the yeast YHR067w/RMD12 gene. The Yhr067p is predicted to be a member of the thioesterase/thioester dehydratase-isomerase superfamily enzymes. Hydratase 2 activity in mitochondrial extracts from cells overexpressing YHR067w was increased. These overexpressing cells also display a striking mitochondrial enlargement phenotype. We conclude that YHR067w encodes a novel mitochondrial 3- hydroxyacyl- thioester dehydratase 2 and suggest renaming it HTD2. The mitochondrial phenotypes of the null and overexpression mutants suggest a crucial role of YHR067w in maintenance of mitochondrial respiratory competence and morphology in yeast. [source] Stearoyl-CoA desaturase as a new drug target for obesity treatmentOBESITY REVIEWS, Issue 2 2005A. Dobrzyn Summary Stearoyl-CoA desaturase (SCD), the rate-limiting enzyme in monounsaturated fatty acid synthesis, has recently been shown to be the critical control point regulating hepatic lipogenesis and lipid oxidation. As several manifestations of the metabolic syndrome and type 2 diabetes mellitus are associated with alterations in intracellular lipid partitioning, we propose that SCD1 may be a potential therapeutic target in the treatment of obesity and the metabolic syndrome. In support of this notion, we have shown that SCD1-deficient mice have increased energy expenditure, reduced body adiposity, increased insulin sensitivity and are resistant to diet-induced obesity and liver steatosis. Furthermore, SCD1 was found to be specifically repressed during leptin-mediated weight loss, and leptin-deficient ob/ob mice lacking SCD1 showed marked correction of the hypometabolic phenotype and hepatic steatosis. Much evidence indicates that the direct anti-steatotic effect of SCD1 deficiency stems from increased fatty acid oxidation and decreased lipid synthesis. All of these findings reveal that pharmacological manipulation of SCD activity might be of benefit in the treatment of obesity, diabetes, liver steatosis and other diseases of the metabolic syndrome. [source] Antilipogenic effect of green tea extract in C57BL/6J- Lepob/ob micePHYTOTHERAPY RESEARCH, Issue 4 2009Hye-Jin Kim Abstract The objective of this study was to determine the effects of green tea extract (GTE) on lipid metabolism in obese animal models. Male C57BL/6J- Lepob/ob mice were divided into control and GTE (0.05 g/100 g diet) groups, which were fed a high-fat (20 g/100 g diet) diet for 12 weeks. Supplementation of GTE significantly reduced (p < 0.01) perirenal and total white adipose tissue weights compared with the control group. Also, the plasma HDL-cholesterol level was significantly higher in the GTE group than in the control group, therefore the GTE group showed a higher HDL-cholesterol/total-cholesterol ratio (HTR) and lower atherogenic index (AI) level than the control group. A reduction of hepatic triglyceride content and adipose tissue weight in the GTE group was related to the suppression of enzyme activities for fatty acid synthesis (glucose-6-phosphate dehydrogenase and malic enzyme) without affecting fatty acid oxidation enzyme (, -oxidation and carnitine palmitoyl transferase) activities in hepatic and adipose tissue. The current results showed that supplementation of green tea extract is beneficial for antiobesity by the suppression of lipogenesis via regulation of related enzyme activities in hepatic and adipose tissue. Copyright © 2008 John Wiley & Sons, Ltd. [source] Fatty acid composition of resynthesized Brassica napus and trigenomic Brassica void of genes for erucic acid in their A genomesPLANT BREEDING, Issue 4 2002M. H. Rahman Abstract The fatty acid composition of seed oil of four interspecific hybrids, resulting from crosses between zero erucic acid Brassica rapa (AA), and high erucic acid Brassica alboglabra/Brassica oleracea (CC) and Brassica carinata (BBCC), void of erucic acid genes in their A-genomes was examined. The erucic acid content in resynthesized Brassica napus (AACC) lines derived from these crosses was only about half that of the high erucic acid CC genome parents, indicating equal contributions of the two genomes to oil (fatty acid) synthesis and accumulation. The differences in C18 fatty acid synthesis between the parents were also evident in the resulting resynthesized B. napus plants. Hexaploid Brassica plants of the genomic constitution AABBCC, in which the AA genome was incapable of erucic acid synthesis, had lower erucic acid contents than the B. carinata (BBCC) parent. This is plausible considering the fact that the zero erucic acid AA genome contributes to oil synthesis in AABBCC plants, thus reducing erucic acid content. [source] Function of plastidial pyruvate kinases in seeds of Arabidopsis thaliana,THE PLANT JOURNAL, Issue 3 2007Sébastien Baud Summary Pyruvate kinase (PK) catalyses the irreversible synthesis of pyruvate and ATP, which are both used in multiple biochemical pathways. These compounds are essential for sustained fatty acid production in the plastids of maturing Arabidopsis embryos. Using a real-time quantitative reverse transcriptase (RT)-PCR approach, the three genes encoding putative plastidial PKs (PKps) in Arabidopsis, namely PKp1 (At3g22960), PKp2 (At5g52920) and PKp3 (At1g32440), were shown to be ubiquitously expressed. However, only PKp1 and PKp2 exhibited significant expression in maturing seeds. The activity of PKp1 and PKp2 promoters was consistent with this pattern, and the study of the PKp1:GFP and PKp2:GFP fusion proteins confirmed the plastidial localization of these enzymes. To further investigate the function of these two PKp isoforms in seeds comprehensive functional analyses were carried out, including the cytological, biochemical and molecular characterization of two pkp1 and two pkp2 alleles, together with a pkp1pkp2 double mutant. The results obtained outlined the importance of these PKps for fatty acid synthesis and embryo development. Mutant seeds were depleted of oil, their fatty acid content was drastically modified, embryo elongation was retarded and, finally, seed germination was also affected. Together, these results provide interesting insights concerning the carbon fluxes leading to oil synthesis in maturing Arabidopsis seeds. The regulation of this metabolic network by the WRINKLED1 transcription factor is discussed, and emphasizes the role of plastidial metabolism and the importance of its tight regulation. [source] Both antisense and sense expression of biotin carboxyl carrier protein isoform 2 inactivates the plastid acetyl-coenzyme A carboxylase in Arabidopsis thalianaTHE PLANT JOURNAL, Issue 4 2002Jay J. Thelen Summary To further characterize the role of biotin carboxyl carrier protein isoform 2 (BCCP2) in acetyl-coenzyme A carboxylase (ACCase) function and fatty acid biosynthesis, plants with reduced or increased expression of this protein were characterized. Analysis of 38 independent Arabidopsis lines expressing antisense BCCP2 transcript behind a constitutive promoter showed no significant phenotype, though antisense transcript was highly expressed. In developing seed, BCCP2 protein was reduced by an average of 38% resulting in a 9% average decrease in fatty acid content in mature seed. Over-expression of BCCP2 behind a seed-specific napin promoter increased the amount of holo-BCCP2 in developing seed by an average of twofold, as determined with anti-biotin antibodies. Surprisingly, the average fatty acid content of T2 seed from over-expression lines was 23% lower than wild-type seed. These plants also exhibited reduced seed setting in 18 of 20 T1 lines which was coincident with increased individual seed mass. Quantification of total BCCP2 in developing siliques using anti-BCCP2 antibodies indicated that as much as 60% of total plastidial BCCP2 was in the non-biotinylated form (apo-BCCP2). Although apo-BCCP2 was highly over-expressed in developing seed, accumulation of other ACCase subunits was unaffected. The specific activity of ACCase was up to 65% lower in developing seed of over-expression lines versus wild type. This was attributed to the assembly of biologically inactive (non-biotinylated) ACCase complexes. Consistent with ACCase exerting control over de novo fatty acid synthesis, reduced activity in developing seed resulted in lower oil content, altered fatty acid composition and reduced seed setting. [source] The molecular mechanism underlying the reduction in abdominal fat accumulation by licorice flavonoid oil in high fat diet-induced obese ratsANIMAL SCIENCE JOURNAL, Issue 5 2009Kazuhisa HONDA ABSTRACT Licorice (Glycyrrhiza glabra) has been widely used in traditional medicines, and its flavonoid oil (LFO) decreases abdominal adipose tissue weight in mammals. In the present study, we investigated the molecular mechanisms underlying the decrease in abdominal adipose tissue weight by LFO. LFO significantly decreased the mRNA levels of rate-limiting enzymes in the hepatic fatty acid synthetic pathway, whereas LFO significantly increased the mRNA levels of a rate-limiting enzyme in the hepatic fatty acid oxidative pathway. LFO significantly decreased the mRNA levels of sterol regulatory element-binding protein-1c (SREBP-1c) (a transcription factor that promotes hepatic fatty acid synthesis), whereas the mRNA levels of peroxisome proliferator-activated receptor-, (PPAR-,) (a transcription factor that promotes hepatic fatty acid oxidation) was significantly increased. All our findings suggest that the decrease in abdominal adipose tissue weight by LFO is mediated by the transcriptional regulation of SREBP-1c and PPAR-, in the liver. Thus, we infer that the natural ingredient LFO is a promising candidate for use as a feed additive to reduce abdominal fat accumulation in domestic animals. [source] Insulin resistance at the crossroads of metabolic syndrome: Systemic analysis using microarraysBIOTECHNOLOGY JOURNAL, Issue 9 2010Dr. Eunjung Kim Abstract Recently, it has been suggested that insulin resistance is a better predictor of metabolic syndrome than obesity. Numerous studies have been conducted to identify insulin resistance susceptibility genes in various model systems. This review focuses on recent findings in microarray analyses, which have indicated that (i) in the liver, genes involved in lipid synthesis and gluconeogenesis are increased in an animal model of insulin resistance that leads into liver steatosis and hyperglycemia; (ii) in adipose tissues, genes involved in fatty acid synthesis and adipogenesis are down-regulated both in insulin-resistant humans and in animals; and (iii) in muscle, overall gene expression, including genes involved in fatty acid oxidation and biosynthesis, is either decreased or unresponsive compared to that of insulin-sensitive control human subjects or animals. Considering the multifaceted effects of insulin resistance in various tissues, aiming at multi-targets rather than a single target will be a more promising strategy for the prevention or treatment of insulin resistance. [source] Type II fatty acid synthesis is essential only for malaria parasite late liver stage developmentCELLULAR MICROBIOLOGY, Issue 3 2009Ashley M. Vaughan Summary Intracellular malaria parasites require lipids for growth and replication. They possess a prokaryotic type II fatty acid synthesis (FAS II) pathway that localizes to the apicoplast plastid organelle and is assumed to be necessary for pathogenic blood stage replication. However, the importance of FAS II throughout the complex parasite life cycle remains unknown. We show in a rodent malaria model that FAS II enzymes localize to the sporozoite and liver stage apicoplast. Targeted deletion of FabB/F, a critical enzyme in fatty acid synthesis, did not affect parasite blood stage replication, mosquito stage development and initial infection in the liver. This was confirmed by knockout of FabZ, another critical FAS II enzyme. However, FAS II-deficient Plasmodium yoelii liver stages failed to form exo-erythrocytic merozoites, the invasive stage that first initiates blood stage infection. Furthermore, deletion of FabI in the human malaria parasite Plasmodium falciparum did not show a reduction in asexual blood stage replication in vitro. Malaria parasites therefore depend on the intrinsic FAS II pathway only at one specific life cycle transition point, from liver to blood. [source] Control of p70 ribosomal protein S6 kinase and acetyl-CoA carboxylase by AMP-activated protein kinase and protein phosphatases in isolated hepatocytesFEBS JOURNAL, Issue 15 2002Ulrike Krause Certain amino acids, like glutamine and leucine, induce an anabolic response in liver. They activate p70 ribosomal protein S6 kinase (p70S6K) and acetyl-CoA carboxylase (ACC) involved in protein and fatty acids synthesis, respectively. In contrast, the AMP-activated protein kinase (AMPK), which senses the energy state of the cell and becomes activated under metabolic stress, inactivates by phosphorylation key enzymes in biosynthetic pathways thereby conserving ATP. In this paper, we studied the effect of AMPK activation and of protein phosphatase inhibitors, on the amino-acid-induced activation of p70S6K and ACC in hepatocytes in suspension. AMPK was activated under anoxic conditions or by incubation with 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAr) or oligomycin, an inhibitor of mitochondrial oxidative phosphorylation. Incubation of hepatocytes with amino acids activated p70S6K via multiple phosphorylation. It also activated ACC by a phosphatase-dependent mechanism but did not modify AMPK activation. Conversely, the amino-acid-induced activation of both ACC and p70S6K was blocked or reversed when AMPK was activated. This AMPK activation increased Ser79 phosphorylation in ACC but decreased Thr389 phosphorylation in p70S6K. Protein phosphatase inhibitors prevented p70S6K activation when added prior to the incubation with amino acids, whereas they enhanced p70S6K activation when added after the preincubation with amino acids. It is concluded that (a) AMPK blocks amino-acid-induced activation of ACC and p70S6K, directly by phosphorylating Ser79 in ACC, and indirectly by inhibiting p70S6K phosphorylation, and (b) both activation and inhibition of protein phosphatases are involved in the activation of p70S6K by amino acids. p70S6K adds to an increasing list of targets of AMPK in agreement with the inhibition of energy-consuming biosynthetic pathways. [source] Malonyl CoA decarboxylase deficiency: C to T transition in intron 2 of the MCD geneJOURNAL OF NEUROSCIENCE RESEARCH, Issue 6 2001Sankar Surendran Abstract Malonyl CoA decarboxylase (MCD) is an enzyme involved in the metabolism of fatty acids synthesis. Based on reports of MCD deficiency, this enzyme is particular important in muscle and brain metabolism. Mutations in the MCD gene result in a deficiency of MCD activity, that lead to psychomotor retardation, cardiomyopathy and neonatal death. To date however, only a few patients have been reported with defects in MCD. We report here studies of a patient with MCD deficiency, who presented with hypotonia, cardiomyopathy and psychomotor retardation. DNA sequencing of MCD revealed a homozygous intronic mutation, specifically a ,5 C to T transition near the acceptor site for exon 3. RT-PCR amplification of exons 2 and 3 revealed that although mRNA from a normal control sample yielded one major DNA band, the mutant mRNA sample resulted in two distinct DNA fragments. Sequencing of the patient's two RT-PCR products revealed that the larger molecular weight fragments contained exons 2 and 3 as well as the intervening intronic sequence. The smaller size band from the patient contained the properly spliced exons, similar to the normal control. Western blotting analysis of the expressed protein showed only a faint band in the patient sample in contrast to a robust band in the control. In addition, the enzyme activity of the mutant protein was lower than that of the control protein. The data indicate that homozygous mutation in intron 2 disrupt normal splicing of the gene, leading to lower expression of the MCD protein and MCD deficiency. J. Neurosci. Res. 65:591,594, 2001. © 2001 Wiley-Liss, Inc. [source] |