Home About us Contact | |||
Fatigue Resistant (fatigue + resistant)
Selected AbstractsChanges in contractile properties of motor units of the rat medial gastrocnemius muscle after spinal cord transectionEXPERIMENTAL PHYSIOLOGY, Issue 5 2006Jan Celichowski The effects of complete transection of the spinal cord at the level of Th9/10 on contractile properties of the motor units (MUs) in the rat medial gastrocnemius (MG) muscle were investigated. Our results indicate that 1 month after injury the contraction time (time-to-peak) and half-relaxation time were prolonged and the maximal tetanic force in most of the MUs in the MG muscle of spinal rats was reduced. The resistance to fatigue also decreased in most of the MUs in the MG of spinal animals. Moreover, the post-tetanic potentiation of twitches in MUs diminished after spinal cord transection. Criteria for the division of MUs into three types, namely slow (S), fast fatigue resistant (FR) and fast fatigable (FF), applied in intact animals, could not be directly used in spinal animals owing to changes in contractile properties of MUs. The ,sag' phenomenon observed in unfused tetani of fast units in intact animals essentially disappeared in spinal rats and it was only detected in few units, at low frequencies of stimulation only. Therefore, the MUs in spinal rats were classified as fast or slow on the basis of an adjusted borderline of 20 ms, instead of 18 ms as in intact animals, owing to a slightly longer contraction time of those fast motor units with the ,sag'. We conclude that all basic contractile properties of rat motor units in the medial gastrocnemius muscle are significantly changed 1 month after complete spinal cord transection, with the majority of motor units being more fatigable and slower than those of intact rats. [source] Fatigue behaviour of friction stir welded AA2024-T3 alloy: longitudinal and transverse crack growthFATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 7 2008M. T. MILAN ABSTRACT The fatigue crack growth properties of friction stir welded joints of 2024-T3 aluminium alloy have been studied under constant load amplitude (increasing -,K), with special emphasis on the residual stress (inverse weight function) effects on longitudinal and transverse crack growth rate predictions (Glinka's method). In general, welded joints were more resistant to longitudinally growing fatigue cracks than the parent material at threshold ,K values, when beneficial thermal residual stresses decelerated crack growth rate, while the opposite behaviour was observed next to KC instability, basically due to monotonic fracture modes intercepting fatigue crack growth in weld microstructures. As a result, fatigue crack growth rate (FCGR) predictions were conservative at lower propagation rates and non-conservative for faster cracks. Regarding transverse cracks, intense compressive residual stresses rendered welded plates more fatigue resistant than neat parent plate. However, once the crack tip entered the more brittle weld region substantial acceleration of FCGR occurred due to operative monotonic tensile modes of fracture, leading to non-conservative crack growth rate predictions next to KC instability. At threshold ,K values non-conservative predictions values resulted from residual stress relaxation. Improvements on predicted FCGR values were strongly dependent on how the progressive plastic relaxation of the residual stress field was considered. [source] Characterisation of human soft palate muscles with respect to fibre types, myosins and capillary supplyJOURNAL OF ANATOMY, Issue 2 2000PER S. STÅL Four human soft palate muscles, and palatopharyngeus, the uvula, the levator and tensor veli palatini were examined using enzyme-histochemical, immunohistochemical and biochemical methods and compared with human limb and facial muscles. Our results showed that each palate muscle had a distinct morphological identity and that they generally shared more similarities with facial than limb muscles. The palatopharyngeus and uvula muscles contained 2 of the highest proportions of type II fibres ever reported for human muscles. In contrast, the levator and tensor veli palatini muscles contained predominantly type I fibres. A fetal myosin heavy chain isoform (MyHC), not usually found in normal adult limb muscles, was present in a small number of fibres in all palate muscles. The mean muscle fibre diameter was smaller than in limb muscles and the individual and intramuscular variability in diameter and shape was considerable. All palate muscles had a high capillary density and an unusually high mitochondrial enzyme activity in the type II fibres, in comparison with limb muscles. No ordinary muscle spindles were observed. The fibre type and MyHC composition indicate that the palatopharyngeus and uvula muscles are functionally involved in quick movements whereas the levator and tensor veli palatini muscles perform slower and more continuous contractions. The high aerobic capacity and the rich capillarisation suggest that the palate muscles are relatively fatigue resistant. Absence of ordinary muscle spindles indicates a special proprioceptive control system. The special morphology of the palate muscles may be partly related to the unique anatomy with only one skeletal insertion, a feature consistent with muscle work at low load and tension and which may influence the cytoarchitecture of these muscles. Other important factors determining the special morphological characteristics might be specific functional requirements, distinct embryological origin and phylogenetic factors. [source] A modelling study of locomotion-induced hyperpolarization of voltage threshold in cat lumbar motoneuronesTHE JOURNAL OF PHYSIOLOGY, Issue 2 2002Yue Dai During fictive locomotion the excitability of adult cat lumbar motoneurones is increased by a reduction (a mean hyperpolarization of ,6.0 mV) of voltage threshold (Vth) for action potential (AP) initiation that is accompanied by only small changes in AP height and width. Further examination of the experimental data in the present study confirms that Vth lowering is present to a similar degree in both the hyperpolarized and depolarized portions of the locomotor step cycle. This indicates that Vth reduction is a modulation of motoneurone membrane currents throughout the locomotor state rather than being related to the phasic synaptic input within the locomotor cycle. Potential ionic mechanisms of this locomotor-state-dependent increase in excitability were examined using three five-compartment models of the motoneurone innervating slow, fast fatigue resistant and fast fatigable muscle fibres. Passive and active membrane conductances were set to produce input resistance, rheobase, afterhyperpolarization (AHP) and membrane time constant values similar to those measured in adult cat motoneurones in non-locomoting conditions. The parameters of 10 membrane conductances were then individually altered in an attempt to replicate the hyperpolarization of Vth that occurs in decerebrate cats during fictive locomotion. The goal was to find conductance changes that could produce a greater than 3 mV hyperpolarization of Vth with only small changes in AP height (< 3 mV) and width (< 1.2 ms). Vth reduction without large changes in AP shape could be produced either by increasing fast sodium current or by reducing delayed rectifier potassium current. The most effective Vth reductions were achieved by either increasing the conductance of fast sodium channels or by hyperpolarizing the voltage dependency of their activation. These changes were particularly effective when localized to the initial segment. Reducing the conductance of delayed rectifier channels or depolarizing their activation produced similar but smaller changes in Vth. Changes in current underlying the AHP, the persistent Na+ current, three Ca2+ currents, the ,h' mixed cation current, the ,A' potassium current and the leak current were either ineffective in reducing Vth or also produced gross changes in the AP. It is suggested that the increased excitability of motoneurones during locomotion could be readily accomplished by hyperpolarizing the voltage dependency of fast sodium channels in the axon hillock by a hitherto unknown neuromodulatory action. [source] |