Home About us Contact | |||
Fathead Minnows (fathead + minnow)
Selected AbstractsAccumulation and DNA damage in fathead minnows (Pimephales promelas) exposed to 2 brominated flame-retardant mixtures, Firemaster® 550 and Firemaster® BZ-54ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2010Jonathan S. Bearr Abstract Firemaster® 550 and Firemaster® BZ-54 are two brominated formulations that are in use as replacements for polybrominated diphenyl ether (PBDE) flame retardants. Two major components of these mixtures are 2,3,4,5-tetrabromo-ethylhexylbenzoate (TBB) and 2,3,4,5-tetrabromo-bis(2-ethylhexyl) phthalate (TBPH). Both have been measured in environmental matrices; however, scant toxicological information exists. The present study aimed to determine if these brominated flame-retardant formulations are bioavailable and adversely affect DNA integrity in fish. Fathead minnows (Pimephales promelas) were orally exposed to either FM 550, FM BZ54, or the nonbrominated form of TBPH, di-(2-ethylhexyl) phthalate (DEHP) for 56 d and depurated (e.g., fed clean food) for 22 d. At several time points, liver and blood cells were collected and assessed for DNA damage. Homogenized fish tissues were extracted and analyzed on day 0 and day 56 to determine the residue of TBB and TBPH and the appearance of any metabolites using gas chromatography-electron-capture negative ion mass spectrometry (GC/ECNI-MS). Significant increases (p,<,0.05) in DNA strand breaks from liver cells (but not blood cells) were observed during the exposure period compared with controls, although during depuration these levels returned to control. Both parent compounds, TBB and TBPH, were detected in tissues at approximately 1% of daily dosage along with brominated metabolites. The present study provides evidence for accumulation, metabolism, and genotoxicity of these new formulation flame retardants in fish and highlights the potential adverse effects of TBB- and TBPH-formulated fire retardants to aquatic species. Environ. Toxicol. Chem. 2010;29:722,729. © 2009 SETAC [source] Antidepressants and their metabolites in municipal wastewater, and downstream exposure in an urban watershedENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 1 2010Chris D. Metcalfe Abstract Antidepressants are a widely prescribed group of pharmaceuticals that can be biotransformed in humans to biologically active metabolites. In the present study, the distribution of six antidepressants (venlafaxine, bupropion, fluoxetine, sertraline, citalopram, and paroxetine) and five of their metabolites was determined in a municipal wastewater treatment plant (WWTP) and at sites downstream of two WWTPs in the Grand River watershed in southern Ontario, Canada. Fathead minnows (Pimephales promelas) caged in the Grand River downstream of a WWTP were also evaluated for accumulated antidepressants. Finally, drinking water was analyzed from a treatment plant that takes its water from the Grand River 17 km downstream of a WWTP. In municipal wastewater, the antidepressant compounds present in the highest concentrations (i.e., >0.5 µg/L) were venlafaxine and its two demethylation products, O - and N -desmethyl venlafaxine. Removal rates of the target analytes in a WWTP were approximately 40%. These compounds persisted in river water samples collected at sites up to several kilometers downstream of discharges from WWTPs. Venlafaxine, citalopram, and sertraline, and demethylated metabolites were detected in fathead minnows caged 10 m below the discharge from a WWTP, but concentrations were all <7 µg/kg wet weight. Venlafaxine and bupropion were detected at very low (<0.005 µg/L) concentrations in untreated drinking water, but these compounds were not detected in treated drinking water. The present study illustrates that data are needed on the distribution in the aquatic environment of both the parent compound and the biologically active metabolites of pharmaceuticals. Environ. Toxicol. Chem. 2010;29:79,89. © 2009 SETAC [source] Effects of lipid-lowering pharmaceuticals bezafibrate and clofibric acid on lipid metabolism in fathead minnow (Pimephales promelas),ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 12 2009Anna Weston Abstract The lipid-lowering agents bezafibrate and clofibric acid, which occur at concentrations up to 3.1 and 1.6 ,L, respectively, are among the most frequently found human pharmaceuticals in the aquatic environment. In contrast to knowledge about their environmental occurrence, little is known about their effects in the environment. The aim of the present study was to analyze effects of these lipid-lowering agents in fish by focusing on their modes of action, lipid metabolism. Fathead minnows were exposed in aquaria to measured concentrations of 0.1, 1.27, 10.18, 101.56, and 106.7 mg/L bezafibrate and to 1.07, 10.75, and 108.91 mg/L clofibric acid for 14 and 21 d, respectively. After exposure, fish liver was analyzed for expression of peroxisome proliferator-activated receptor , (PPAR,) by quantitative polymerase chain reaction (PCR), and the PPAR-regulated enzyme fatty acyl-coenzyme-A oxidase (FAO) involved in fatty acid oxidation. Bezafibrate had no effect, either on PPAR, expression or on FAO activity, at all concentrations. In contrast, clofibric acid induced FAO activity in male fathead minnows at 108.91 mg/L. No increase in expression of PPAR, messenger ribonucleic acid was observed. Egg production was apparently decreased after 21 d of exposure to 108.91 mg/L clofibric acid. The present study demonstrates that bezafibrate has very little or no effect on PPAR, expression and FAO activity, but clofibric acid affects FAO activity. [source] Natural disturbance and life history: consequences of winterkill on fathead minnow in boreal lakesJOURNAL OF FISH BIOLOGY, Issue 3 2006A. J. Danylchuk Age, growth and reproductive characteristics of fathead minnow Pimephales promelas populations inhabiting four lakes that varied in the extent and frequency of winterkill were studied in the boreal region of western Canada. The lifespan of fathead minnows inhabiting lakes prone to winterkill was 1,2 years shorter than those in less disturbed lakes. In populations prone to winterkill, fish displayed faster growth rates and grew to a larger size-at-age, particularly during the first year of life. Although lower population densities in winterkill lakes probably contributed to this increased growth, adults in these populations tended to spawn earlier in the season than the smaller adults in more stable populations. Fathead minnows in lakes prone to winterkill also matured at an earlier age and allocated a greater proportion of their body mass to gonads than conspecifics in the more benign, stable lakes. These trends are consistent with predictions for organisms in variable, unpredictable environments and, because fathead minnows are tolerant to a wide range of environmental conditions, suggest that variation in life-history traits among populations is probably a product of both selection and phenotypic plasticity. [source] Life-cycle exposure of fathead minnows (Pimephales promelas) to an ethinylestradiol concentration below 1 ng/L reduces egg fertilization success and demasculinizes malesENVIRONMENTAL TOXICOLOGY, Issue 2 2005Joanne L. Parrott Abstract Forty-eight hours after fertilization, fathead minnow (Pimephales promelas) eggs were exposed to the synthetic estrogen 17,-ethinylestradiol (EE2) at nominal concentrations of 0.32 and 0.96 ng/L and measured concentrations of 3.5, 9.6, and 23 ng/L. The fish were observed through the larval, juvenile, and adult stages. Growth, secondary sex characteristics, the liver somatic index, the gonadosomatic index, and fecundity were examined after several lengths of exposure. No significant changes were seen in fry or juvenile growth from 8 to 30 days posthatch (dph). An increase in the ovipositor index (a female secondary sex characteristic) was the most sensitive early response at 60 dph and was seen in fish exposed to EE2 concentrations , 3.5 ng/L. Continuation of the EE2 exposure until 150 dph, through maturation and reproduction, allowed measurement of two sensitive end points: decreased egg fertilization and sex ratio (skewed toward females), both of which were significantly affected at the lowest EE2 concentration tested, 0.32 ng/L. The next most sensitive end point was demasculinization (decreased male secondary sex characteristic index) of males exposed to an EE2 concentration of 0.96 ng/L. The effects of low concentrations of EE2 (0.32 and 0.96 ng/L) were manifested in male fish (decreased male sex characteristics and reduced egg fertilization success), whereas female fish showed no changes in the gonadosomatic index. Exposure to higher EE2 concentrations negatively affected females, as shown by a reduced gonadosomatic index at 150 dph in fish exposed to ,3.5 ng/L EE2. Although there were some end points that showed changes at 60 dph, the reproductive end points and external sex characteristics measured in mature fish at 150 dph were more sensitive, with response thresholds of EE2 ranging from 0.32 to 0.96 ng/L. The concentrations of EE2 that negatively affected fathead minnows were similar to or lower than those detected in many municipal wastewater effluents. In conclusion, life-cycle exposure of fathead minnows proved to be a very sensitive bioassay, and responses were seen at concentrations of less than 1 ng/L, which are environmentally relevant concentrations of EE2. © 2005 Government of Canada. Exclusive worldwide publication rights in the article have been transferred to John Wiley & Sons, Inc. Environ Toxicol 20: 131,141, 2005. [source] Toxicity evaluation of metal plating wastewater employing the Microtox® assay: A comparison with cladocerans and fishENVIRONMENTAL TOXICOLOGY, Issue 2 2001Kyungho Choi Abstract The relative sensitivity of the Microtox assay is closely related to the type of toxicant, and hence its utility in biomonitoring effluents is better evaluated on a case-by-case basis. The Microtox® assay, employing the marine bacterium Vibrio fischeri, was evaluated for its applicability in monitoring metal plating wastewater for toxicity. The results of the Microtox assay after 5, 15, and 30 min of exposure, were compared with data obtained from conventional whole effluent toxicity testing (WET) methods that employed Daphnia magna, Ceriodaphnia dubia, and the fathead minnow (Pimephales promelas). The Microtox assay produced notably comparable EC50 values to the LC50 values of the acute fathead minnow toxicity test (<0.5 order of difference). The Spearman's rank correlation analyses showed that the bacterial assay, regardless of exposure duration, correlated better with the acute fish than the daphnid results (p<0.05). These observations were consistent to other studies conducted with inorganic contaminants. The relative sensitivity of the 30-min Microtox assay was within the range of the two frequently used acute daphnid/fish toxicity tests. In conclusion, the Microtox assay correlated well with the acute fathead minnow data and is well suited for toxicity monitoring for these types of industrial wastes. © 2001 John Wiley & Sons, Inc. Environ Toxicol 16: 136,141, 2001 [source] Pulp and paper mill effluents induce distinct gene expression changes linked to androgenic and estrogenic responses in the fathead minnow (Pimephales promelas)ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2010Julieta Werner Abstract Although effluent treatment systems within pulp and paper mills remove many toxicants and improve wastewater quality, there is a need to understand and quantify the effectiveness of the treatment process. At a combined news and kraft pulp and paper mill in northwestern Ontario, Canada, fathead minnow (FHM) reproduction and physiology were examined before, during, and after a short-term (6-d) exposure to 10% (v/v) untreated kraft mill effluent (UTK), 25% (v/v) secondary treated kraft mill effluent (TK), and 100% (v/v) combined mill outfall (CMO). Although UTK exposure significantly decreased egg production, neither TK nor CMO caused any reproductive changes. The expression of six genes responsive to endocrine-disrupting compounds, stress, or metals was then examined in livers of these fish using real-time polymerase chain reaction. In female FHMs, none of the three effluents induced significant expression changes in any genes investigated. By contrast, in males there were significant increases in the mRNA levels of androgen receptor, estrogen receptor (ER) ,, and cytochrome P4501A (CYP1A) upon UTK and TK exposure but no changes in ER, or vitellogenin (VTG) gene expression, whereas CMO exposure significantly increased the mRNA levels of ER,, VTG, and CYP1A. Together, these results suggest that kraft effluent before and after biological treatment contained compounds able to induce androgenic effects in FHMs, and that combination of kraft and newsmill effluents eliminated the androgenic compounds while inducing distinct and significant patterns of gene expression changes that were likely due to estrogenic compounds produced by the newsmill. Environ. Toxicol. Chem. 2010;29:430,439. © 2009 SETAC [source] Effects of lipid-lowering pharmaceuticals bezafibrate and clofibric acid on lipid metabolism in fathead minnow (Pimephales promelas),ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 12 2009Anna Weston Abstract The lipid-lowering agents bezafibrate and clofibric acid, which occur at concentrations up to 3.1 and 1.6 ,L, respectively, are among the most frequently found human pharmaceuticals in the aquatic environment. In contrast to knowledge about their environmental occurrence, little is known about their effects in the environment. The aim of the present study was to analyze effects of these lipid-lowering agents in fish by focusing on their modes of action, lipid metabolism. Fathead minnows were exposed in aquaria to measured concentrations of 0.1, 1.27, 10.18, 101.56, and 106.7 mg/L bezafibrate and to 1.07, 10.75, and 108.91 mg/L clofibric acid for 14 and 21 d, respectively. After exposure, fish liver was analyzed for expression of peroxisome proliferator-activated receptor , (PPAR,) by quantitative polymerase chain reaction (PCR), and the PPAR-regulated enzyme fatty acyl-coenzyme-A oxidase (FAO) involved in fatty acid oxidation. Bezafibrate had no effect, either on PPAR, expression or on FAO activity, at all concentrations. In contrast, clofibric acid induced FAO activity in male fathead minnows at 108.91 mg/L. No increase in expression of PPAR, messenger ribonucleic acid was observed. Egg production was apparently decreased after 21 d of exposure to 108.91 mg/L clofibric acid. The present study demonstrates that bezafibrate has very little or no effect on PPAR, expression and FAO activity, but clofibric acid affects FAO activity. [source] Competitive binding comparison of endocrine-disrupting compounds to recombinant androgen receptor from fathead minnow, rainbow trout, and humanENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2007Vickie S. Wilson Abstract Typically, in vitro hazard assessments for the identification of endocrine-disrupting compounds (EDCs), including those outlined in the Endocrine Disruptor Screening and Testing Advisory Committee (EDSTAC) Tier 1 Screening protocols, utilize mammalian receptors. Evidence, however, exists that fish sex steroid hormone receptors differ from mammalian receptors both structurally and in their binding affinities for some steroids and environmental chemicals. Most of the binding studies to date have been conducted using cytosolic preparations from various tissues. In the present study, we compare competitive binding of a set of compounds to full-length recombinant rainbow trout androgen receptor , (rtAR), fathead minnow androgen receptor (fhAR), and human androgen receptor (hAR), each expressed in COS cells. Saturation binding and subsequent Scatchard analysis using [3H]R1881, a high-affinity synthetic androgen, revealed an equilibrium dissociation constant (Kd) of 0.11 nM for the rtAR, 1.8 nM for the fhAR, and 0.84 nM for the hAR. Compounds, including endogenous and synthetic steroids, known mammalian antiandrogens, and environmental compounds, were tested for competitive binding to each of the three receptors. Overall, agreement existed across receptors as to binding versus nonbinding for all compounds tested in this study. Minor differences, however, were found in the relative order of binding of the compounds to the individual receptors. Studies such as these will facilitate the identification of EDCs that may differentially affect specific species and aid in the development and support of future risk assessment protocols. [source] Development and validation of a 2,000-gene microarray for the fathead minnow (Pimephales promelas)ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2007Patrick Larkin Abstract Gene microarrays provide the field of ecotoxicology new tools to identify mechanisms of action of chemicals and chemical mixtures. Herein we describe the development and application of a 2,000-gene oligonucleotide microarray for the fathead minnow Pimephales promelas, a species commonly used in ecological risk assessments in North America. The microarrays were developed from various cDNA and subtraction libraries that we constructed. Consistency and reproducibility of the microarrays were documented by examining multiple technical replicates. To test application of the fathead minnow microarrays, gene expression profiles of fish exposed to 17,-estradiol, a well-characterized estrogen receptor (ER) agonist, were examined. For these experiments, adult male fathead minnows were exposed for 24 h to waterborne 17,-estradiol (40 or 100 ng/L) in a flow-through system, and gene expression in liver samples was characterized. Seventy-one genes were identified as differentially regulated by estradiol exposure. Examination of the gene ontology designations of these genes revealed patterns consistent with estradiol's expected mechanisms of action and also provided novel insights as to molecular effects of the estrogen. Our studies indicate the feasibility and utility of microarrays as a basis for understanding biological responses to chemical exposure in a model ecotoxicology test species. [source] Comparison of response to 17,-estradiol and 17,-trenbolone among three small fish speciesENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 10 2006Masanori Seki Abstract Three small fish species, medaka (Oryzias latipes), fathead minnow (Pimephales promelas), and zebrafish (Danio rerio), were exposed to an estrogen, 17,-estradiol (E2), and an androgen, 17,-trenbolone (TB), for 21 d under flow-through conditions to compare the susceptibility among these three small fish species to the substances. Effects on gross morphology, including secondary sex characteristics and gonadosomatic index, as well as on blood or liver vitellogenin (VTG) levels were assessed. In E2 exposures, significant increases in estrogenic activity were observed in both sexes of all three fish species. The lowest-observedeffect concentrations (LOECs) of E2 for VTG induction in males of medaka, fathead minnow, and zebrafish were less than or equal to 8.94, 28.6, and 85.9 ng/L, respectively. In TB exposures, we observed masculinization of secondary sex characteristics in females as a result of the androgenic activity of TB in medaka with a LOEC of 365 ng/L and in fathead minnow with a LOEC of 401 ng/L. We also found VTG reduction in females of all three fish species. These results suggest that the susceptibility of medaka to estrogenic chemicals may be higher than those of fathead minnow and zebrafish and that the susceptibility of medaka to androgenic chemicals may be almost equal to that of fathead minnow in the 21-d fish assay. [source] Evaluation of the methoxytriazine herbicide prometon using a short-term fathead minnow reproduction test and a suite of in vitro bioassaysENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2006Daniel L. Villeneuve Abstract Prometon is one of the most consistently detected herbicides in the U.S. environment. However, no previous assessment of the potential for prometon or related methoxytriazine herbicides to act as endocrine-disrupting chemicals has been conducted. This study used an array of in vitro bioassays to assess whether prometon, atraton, terbumeton, or secbumeton might act as potent (ant)agonists of the aryl hydrocarbon, estrogen, androgen, or glucocorticoid receptors or as aromatase inhibitors or inducers in vitro. Potential effects of prometon were also evaluated using a 21-d fathead minnow reproduction assay. Concentrations of methoxytriazines, as great as 1 mg/L (4.4 ,M), did not induce significant dioxin-like responses in H4IIE-luc cells, estrogenic responses in MVLN cells, or androgen or glucocorticoid receptor,mediated responses in MDA-kb2 cells, nor did the methoxytriazines significantly affect aromatase activity in vitro. In the fathead minnow assay, exposure to 20, 200, or 1,000 ,g prometon/L significantly reduced the weight of the male fat pad (an androgen-responsive tissue) relative to body weight. Exposure to 20 ,g prometon/L significantly increased female plasma testosterone concentrations, but the effect was not observed at greater concentrations. Overall, prometon did not significantly reduce fecundity over the 21-d exposure, nor were other endpoints, including plasma vitellogenin and estradiol concentrations, brain and ovary aromatase activity, and male tubercle index, significantly affected. Evidence from our work suggests that prometon may cause subtle endocrine and/or reproductive effects in fathead minnows, but no clear mechanism of action was observed. The relevance of these effects to hazard assessment for the pesticide is uncertain. [source] Use of paired fathead minnow (Pimephales promelas) reproductive test.ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2006Part 1: Assessing biological effects of final bleached kraft pulp mill effluent using a mobile bioassay trailer system Abstract Reproductive effects have been recorded in wild fish in waters receiving pulp mill effluent (PME) since the mid to late 1980s. Laboratory assays with fathead minnow (FHM; Pimephales promelas) have been developed to better understand fish responses to PME. However, observations from laboratory studies have been variable, making it difficult to establish cause/effect relationships. A lack of environmental relevance in these laboratory studies may have contributed to the variability observed. The objectives of the present study were, first, to determine the effects of bleached kraft PME (BKME) on FHM under environmentally realistic conditions (i.e., ambient water and effluent quality) and, second, to determine the suitability of pair-breeding FHM to better link BKME-induced changes in indicators at the biochemical, individual, and population levels. A mobile bioassay trailer was situated on-site at a bleached kraft mill for 60 d, allowing supply of both ambient water (Lake Superior, Canada) and final BKME. The reproductive output of FHM was initially assessed for 21 d to obtain baseline data pre-exposure. At the end of the pre-exposure period, selected breeding pairs were exposed to final BKME (100% v/v and 1% v/v) for 21 d. Results demonstrated a stimulatory response pattern at 1% BKME (e.g., increased egg production) compared to control. In the 100% treatment, spawning events were reduced and fewer eggs were produced during the first two weeks of exposure. Exposure to 100% (v/v) BKME also resulted in ovipositor development in males and development of male secondary sex characteristics in females. Obtaining pre-exposure data and use of pair-breeding FHM in this assay gave a sensitive indication of effluent effects and allowed accurate comparisons of endpoints to be made. [source] Use of paired fathead minnow (Pimephales promelas) reproductive test.ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2006Part 2: Source identification of biological effects at a bleached kraft pulp mill Abstract Reproductive effects of pulp mill effluents on fish continue to be reported in Canadian waters. Spawning delays, reduced gonad size, and altered levels of sex steroid hormones have been found in both sexes of various fish species exposed to effluents. We initiated a project to identify the source/cause of such effects. In part 1 of this two-part series, we exposed mature adult fathead minnow (FHM; Pimephales promelas) for 21 d to final treated effluent (1% and 100% v/v) from a bleached kraft pulp mill in Terrace Bay (ON, Canada). Results suggested pulp mill effluent from this mill affected reproductive indicators in FHM and effects were dependent on effluent concentration, duration of exposure, and method of data analysis. The main objective of this paper was to use the FHM assay to identify waste stream sources within the mill that affect reproductive indicators. Various process streams were selected, characterized with respect to effluent chemistry and acute toxicity, and a subset was tested on-site with the 21-d FHM bioassay. Results showed that both the combined mill effluent (before secondary treatment) and the combined alkaline stream (CALK) caused both decreased spawning events (,55% for both streams) and decreased egg production (28 and 74%, respectively), and the CALK stream resulted in significant male ovipositor development. By comparing response patterns we were able to identify the CALK stream as a source of compounds at this mill affecting reproductive indicators in FHM and highlight this stream for further toxicity identification evaluation. [source] Evaluation of acute copper toxicity to larval fathead minnows (Pimephales promelas) in soft surface watersENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2005Eric J. Van Genderen Abstract The hardness-based regulatory approach for Cu prescribes an extrapolation of the toxicity-versus-hardness relationship to low hardness (,50 mg/L as CaCO3). Hence, the objective of the present research was to evaluate the influences of water quality on acute Cu toxicity to larval fathead minnow (Pimephales promelas) in low-hardness surface waters. Seasonal water sampling was conducted at 24 sites throughout South Carolina, USA, to determine the site-specific influences of soft surface-water conditions on acute Cu toxicity. Concurrent toxicity tests in laboratory water, matched for hardness and alkalinity (modified method), also were conducted to allow calculation of water-effect ratios (WERs). In addition, tests were conducted at recommended hardness levels (recommended method) for comparison of WER methodology in soft water. Surface-water conditions (average ± standard deviation, n = 53) were hardness of 16 ± 8 mg/L as CaCO3, alkalinity of 18 ± 11 mg/L as CaCO3, and dissolved organic carbon of 6 ± 4 mg/L. Dissolved Cu 48-h median lethal concentration (LC50) values varied nearly 45-fold across the dataset and greater than four-fold at individual sites. Spatial (p < 0.0001) and seasonal (p = 0.026) differences among LC50 values were determined for eight sites that had multiple toxicity results for one year. All modified WERs were greater than 1.0, suggesting that the site waters were more protective of Cu toxicity than the matched laboratory water. Some WERs generated using recommended methods were less than 1.0, suggesting limited site-specific protection. Based on these observations, extrapolation of the hardness-based equation for Cu at 50 mg/L or less as CaCO3 would adequately protect fathead minnow populations in soft surface waters. The WER results presented here demonstrate the inconsistency between hardness-based criteria and the methodology for deriving site-specific water-quality criteria in low-hardness waters. [source] Toxicity of fluoroquinolone antibiotics to aquatic organismsENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2005April A. Robinson Abstract Toxicity tests were performed with seven fluoroquinolone antibiotics, ciprofloxacin, lomefloxacin, ofloxacin, levofloxacin, clinafloxacin, enrofloxacin, and flumequine, on five aquatic organisms. Overall toxicity values ranged from 7.9 to 23,000 ,g/L. The cyanobacterium Microcystis aeruginosa was the most sensitive organism (5-d growth and reproduction, effective concentrations [EC50s] ranging from 7.9 to 1,960 ,g/L and a median of 49 ,g/L), followed by duckweed (Lemna minor, 7-d reproduction, EC50 values ranged from 53 to 2,470 ,g/L with a median of 106 ,g/L) and the green alga Pseudokirchneriella subcapitata (3-d growth and reproduction, EC50 values ranged from 1,100 to 22,700 ,g/L with a median 7,400 ,g/L). Results from tests with the crustacean Daphnia magna (48-h survival) and fathead minnow (Pimephales promelas, 7-d early life stage survival and growth) showed limited toxicity with no-observed-effect concentrations at or near 10 mg/L. Fish dry weights obtained in the ciprofloxacin, levofloxacin, and ofloxacin treatments (10 mg/L) were significantly higher than in control fish. The hazard of adverse effects occurring to the tested organisms in the environment was quantified by using hazard quotients. An estimated environmental concentration of 1 ,g/L was chosen based on measured environmental concentrations previously reported in surface water; at this level, only M. aeruginosa may be at risk in surface water. However, the selective toxicity of these compounds may have implications for aquatic community structure. [source] Impact of perfluorooctanoic acid on fathead minnow (Pimephales promelas) fatty acyl-coa oxidase activity, circulating steroids, and reproduction in outdoor microcosmsENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2004Ken D. Oakes Abstract This study investigates reproductive impairment and biochemical changes in fathead minnow (Pimephales promelas) exposed for 39 d to varying concentrations of perfluorooctanoic acid (PFOA) under microcosm conditions. While the concentrations tested in this study were much higher than those normally found in the environment, no mortality was associated with PFOA exposure. Only modest changes were observed in condition factor and in relative liver and gonad size. Significant declines in circulating plasma steroids were observed, but these were accompanied by only limited increases in time to first oviposition and decreases in overall egg production. Peroxisome proliferation, as quantified by fatty acyl-CoA oxidase (FAO) activity, was elevated with low PFOA concentrations but attenuated with exposure to higher PFOA doses. Little evidence was seen of differential induction of peroxisome-associated enzyme activity with sex. Oxidative stress, as quantified by the 2-thiobarbituric acid reactive substances (TBARS) assay, was only modestly influenced by PFOA exposure and is not a significant consequence of FAO activity in fathead minnow. Perfluorooctanoic acid appears to be relatively nontoxic at environmentally relevant concentrations but may impact biochemical and reproductive endpoints under conditions associated with environmental spills. [source] Effects of the androgenic growth promoter 17-,-trenbolone on fecundity and reproductive endocrinology of the fathead minnow,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 6 2003Gerald T. Ankley Abstract Trenbolone acetate is a synthetic steroid that is extensively used in the United States as a growth promoter in beef cattle. The acetate is administered to livestock via slow-release implants; some is converted by the animal to 17-,-trenbolone, a relatively potent androgen receptor agonist in mammalian systems. Recent studies indicate that excreted 17-,-trenbolone is comparatively stable in animal waste, suggesting the potential for exposure to aquatic animals via direct discharge, runoff, or both. However, little is known concerning the toxicity of trenbolone to fish. Our goal was to assess the effects of 17-,-trenbolone on reproductive endocrinology of the fathead minnow (Pimephales promelas). An in vitro competitive binding study with the fathead minnow androgen receptor demonstrated that 17-,-trenbolone had a higher affinity for the receptor than that of the endogenous ligand, testosterone. Male and female fish were exposed for 21 d to nominal (target) concentrations of 17-,-trenbolone ranging from 0.005 to 50 ,g/L. Fecundity of the fish was significantly reduced by exposure to measured test concentrations , 0.027 ,g/ L. The 17-,-trenbolone was clearly androgenic in vivo at these concentrations, as evidenced by the de novo production in females of dorsal (nuptial) tubercles, structures normally present only on the heads of mature males. Plasma steroid (testosterone and ,-estradiol) and vitellogenin concentrations in the females all were significantly reduced by exposure to 17-,-trenbolone. The 17-,-trenbolone also altered reproductive physiology of male fathead minnows, albeit at concentrations much higher than those producing effects in females. Males exposed to 17-,-trenbolone at 41 ,g/L (measured) exhibited decreased plasma concentrations of 11-ketotestosterone and increased concentrations of ,-estradiol and vitellogenin. Overall, our studies indicate that 17-,-trenbolone is a potent androgen and reproductive toxicant in fish. Given the widespread use of trenbolone acetate as a growth promoter, and relative stability of its metabolites in animal wastes, further studies are warranted to assess potential ecological risk. [source] The further development of ionoregulatory measures as biomarkers of sensitivity and effect in fish speciesENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2002S. J. Croke Abstract Extensive season-by-season sampling was used to establish the normal range of whole-body Na+ and Cl, and Na+ uptake in healthy populations of two fish species, rainbow trout, Oncorhynchus mykiss, and fathead minnow, Pimephales promelas, of known differences in sensitivity to ionoregulatory toxicants (low pH, trace metals). These data together with responses of both species to six different ionoregulatory challenge tests of increasing severity (mild handling, exposure to low Ca2+ water, epinephrine injection, net-confinement stress, exposure to copper, and osmotic shock) were evaluated for their potential as biomarkers of sensitivity and of effect of ionoregulatory toxicants. There were no obvious biomarkers of sensitivity in the ion measures themselves, but four of the six challenges (exposure to low Ca2+ water, epinephrine injection, exposure to copper, and osmotic shock) produced a significantly greater effect in the more sensitive of the two species, fathead minnow. Based on the responses of both species, this article makes a number of recommendations for the application of ion measures alone and in combination with challenge tests to the assessment of chronic effects in populations experiencing sublethal ionoregulatory stress. [source] Utility of a juvenile fathead minnow screening assay for detecting (anti-)estrogenic substancesENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2002Grace H. Panter Abstract The European Chemical Industry's aquatic research program for endocrine disrupters includes the development of an in vivo juvenile fathead minnow (Pimephales promelas) screening assay.Working within the Organization for Economic Cooperation and Development's (OECD, Paris, France) tiered approach to endocrine disrupter evaluation in fish, the juvenile fish screening protocol was adapted from the OECD test guideline 204. Six chemicals, with different (anti-)estrogenic potencies, were used to develop the in vivo juvenile fish screening protocol: diethylstilbestrol, 17,-ethynylestradiol, genistein, methoxychlor, 4- tert -pentylphenol, and ZM189,154 (a novel pharmaceutical antiestrogen). Mixed-sex juvenile fathead minnows were exposed to individual chemicals (with chemical analyzes) and sampled after 4, 7, 14, and 21 d of exposure. Wet weight, total length, condition factor, and whole-body homogenate concentrations of vitellogenin (VTG) were determined. Estrogens and antiestrogens were detected in this screen by virtue of the VTG response (an elevation or suppression, respectively) after 14 d. The study showed that the use of VTG concentrations in mixed-sex juvenile fish provides a sensitive and robust assay for the detection of both estrogenic and antiestrogenic chemicals, with widely divergent potencies. [source] Biotic ligand model of the acute toxicity of metals.ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 10 2001Abstract The biotic ligand model (BLM) was developed to explain and predict the effects of water chemistry on the acute toxicity of metals to aquatic organisms. The biotic ligand is defined as a specific receptor within an organism where metal complexation leads to acute toxicity. The BLM is designed to predict metal interactions at the biotic ligand within the context of aqueous metal speciation and competitive binding of protective cations such as calcium. Toxicity is defined as accumulation of metal at the biotic ligand at or above a critical threshold concentration. This modeling framework provides mechanistic explanations for the observed effects of aqueous ligands, such as natural organic matter, and water hardness on metal toxicity. In this paper, the development of a copper version of the BLM is described. The calibrated model is then used to calculate LC50 (the lethal concentration for 50% of test organisms) and is evaluated by comparison with published toxicity data sets for freshwater fish (fathead minnow, Pimephales promelas) and Daphnia. [source] Evaluation of effluent toxicity as an indicator of aquatic life condition in effluent-dominated streams: A pilot studyINTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT, Issue 4 2008Jerry Diamond Abstract The types and quality of data needed to determine relationships between chronic whole effluent toxicity (WET) test results and in-stream biological condition were evaluated using information collected over a 1.5-y period from 6 different sites across the United States. A data-quality-objectives approach was used that included several proposed measurement quality objectives (MQOs) that specified desired precision, bias, and sensitivity of methods used. The 6 facilities used in this study (4 eastern and 2 western United States) all had design effluent concentrations >60% of the stream flow. In addition to at least quarterly chronic Ceriodaphnia dubia, Pimephales promelas (fathead minnow), and Selenastrum capricornutum (green algae) WET tests, other tests were conducted to address MQOs, including splits, duplicates, and blind positive and negative controls. Macroinvertebrate, fish, and periphyton bioassessments were conducted at multiple locations upstream and downstream of each facility. The test acceptance criteria of the US Environmental Protection Agency (USEPA) were met for most WET tests; however, this study demonstrated the need to incorporate other MQOs (minimum and maximum percent significant difference and performance on blind samples) to ensure accurate interpretation of effluent toxicity. More false positives, higher toxicity, and more "failed" (noncompliant) tests were observed using no-observed-effect concentration (NOEC) as compared to the IC25 endpoint (concentration causing ,25% decrease in organism response compared to controls). Algae tests often indicated the most effluent toxicity in this study; however, this test was most susceptible to false positives and high interlaboratory variability. Overall, WET test results exhibited few relationships with bioassessment results even when accounting for actual effluent dilution. In general, neither frequency of WET noncompliance nor magnitude of toxicity in tests were significantly related to differences in biological condition upstream and downstream of a discharge. Periphyton assessments were most able to discriminate small changes downstream of the effluent, followed by macroinvertebrates and fish. Although sampling methods were robust, more replicate samples collected upstream and downstream of each facility were needed to increase detection power. In general, macroinvertebrate and periphyton assessments together appeared to be sufficient to address project objectives. [source] Natural disturbance and life history: consequences of winterkill on fathead minnow in boreal lakesJOURNAL OF FISH BIOLOGY, Issue 3 2006A. J. Danylchuk Age, growth and reproductive characteristics of fathead minnow Pimephales promelas populations inhabiting four lakes that varied in the extent and frequency of winterkill were studied in the boreal region of western Canada. The lifespan of fathead minnows inhabiting lakes prone to winterkill was 1,2 years shorter than those in less disturbed lakes. In populations prone to winterkill, fish displayed faster growth rates and grew to a larger size-at-age, particularly during the first year of life. Although lower population densities in winterkill lakes probably contributed to this increased growth, adults in these populations tended to spawn earlier in the season than the smaller adults in more stable populations. Fathead minnows in lakes prone to winterkill also matured at an earlier age and allocated a greater proportion of their body mass to gonads than conspecifics in the more benign, stable lakes. These trends are consistent with predictions for organisms in variable, unpredictable environments and, because fathead minnows are tolerant to a wide range of environmental conditions, suggest that variation in life-history traits among populations is probably a product of both selection and phenotypic plasticity. [source] [3H] Citalopram Binding to Serotonin Transporter Sites in Minnow BrainsBASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 3 2007Georgianna G. Gould Herein, we examined whether golden shiner (Notemigonus crysoleucas) or fathead minnow (Pimphales promelas) SERTs and catecholamine transporters respond comparably to mammalian SERTs and NETs. We compared the pharmacological profiles of central SERT and NET binding sites of the golden shiner minnow to those of rats. Homogenate binding with the radioligand [3H] citalopram indicated that golden shiner SERT has a KD of 7 ± 3 nM and a Bmax of 226 ± 46 fmol/mg protein. These values are similar to those of rat cortical SERT (KD 1.4 ± 0.1 nM and Bmax 240 ± 48 fmol/mg protein). We also examined SERT binding in fathead minnow brain, and found it similar to that of the golden shiner. A putative golden shiner NET, measured using [3H] nisoxetine, had KD = 12 ± 5 nM and Bmax = 187 ± 49 fmol/mg protein, whereas rat hippocampal NET had KD = 5 ± 2 nM and Bmax = 93 ± 8 fmol/mg protein. Minnow SERT and NET binding is displaceable by selective reuptake inhibitors. Finally, we exposed zebrafish (Danio rerio) to the serotonin reuptake inhibiting antidepressant sertraline or the organophosphate chlorpyrifos for 21 days. After either treatment, SERT binding was reduced by 50% (n = 3,6, P < 0.05). In summary, minnow central SERT and NET express slightly lower affinity for antidepressants than rats. However, magnitudes of affinity are similar, and minnow SERT binding is decreased by chronic sertraline or chlorpyrifos administration. [source] Population ecology and prey consumption by fathead minnows in prairie wetlands: importance of detritus and larval fishECOLOGY OF FRESHWATER FISH, Issue 3 2007B. R. Herwig Abstract,,, The fathead minnow Pimephales promelas occurs in high densities in wetlands of the prairie pothole region (PPR) of North America, but food resources sustaining these populations are poorly known. We assessed population dynamics and prey consumption of fathead minnow populations in three PPR wetlands for 2 years. Fish density peaked at 107 fish per m2 for all age classes combined. Larval and juvenile fish dominated these populations in terms of abundance and accounted for 83% of total prey consumption. Detritus dominated fish diets, representing 53%, 40% and 79% of diet mass for larval, juvenile and adult fish respectively. Detritus consumption was positively related to minnow density and negatively related to invertebrate abundance, but only for adult fish. Seasonal production:biomass ratios were unrelated to proportions of detritus in the diet for all ages of fish, indicating that detritus is an important food resource capable of meeting metabolic demands and sustaining fish growth in high-density populations. Detritus consumption may also weaken links between abundance of invertebrate prey and minnows, promoting dense fish populations with strong, consistent influences on wetland ecosystems. [source] Life-cycle exposure of fathead minnows (Pimephales promelas) to an ethinylestradiol concentration below 1 ng/L reduces egg fertilization success and demasculinizes malesENVIRONMENTAL TOXICOLOGY, Issue 2 2005Joanne L. Parrott Abstract Forty-eight hours after fertilization, fathead minnow (Pimephales promelas) eggs were exposed to the synthetic estrogen 17,-ethinylestradiol (EE2) at nominal concentrations of 0.32 and 0.96 ng/L and measured concentrations of 3.5, 9.6, and 23 ng/L. The fish were observed through the larval, juvenile, and adult stages. Growth, secondary sex characteristics, the liver somatic index, the gonadosomatic index, and fecundity were examined after several lengths of exposure. No significant changes were seen in fry or juvenile growth from 8 to 30 days posthatch (dph). An increase in the ovipositor index (a female secondary sex characteristic) was the most sensitive early response at 60 dph and was seen in fish exposed to EE2 concentrations , 3.5 ng/L. Continuation of the EE2 exposure until 150 dph, through maturation and reproduction, allowed measurement of two sensitive end points: decreased egg fertilization and sex ratio (skewed toward females), both of which were significantly affected at the lowest EE2 concentration tested, 0.32 ng/L. The next most sensitive end point was demasculinization (decreased male secondary sex characteristic index) of males exposed to an EE2 concentration of 0.96 ng/L. The effects of low concentrations of EE2 (0.32 and 0.96 ng/L) were manifested in male fish (decreased male sex characteristics and reduced egg fertilization success), whereas female fish showed no changes in the gonadosomatic index. Exposure to higher EE2 concentrations negatively affected females, as shown by a reduced gonadosomatic index at 150 dph in fish exposed to ,3.5 ng/L EE2. Although there were some end points that showed changes at 60 dph, the reproductive end points and external sex characteristics measured in mature fish at 150 dph were more sensitive, with response thresholds of EE2 ranging from 0.32 to 0.96 ng/L. The concentrations of EE2 that negatively affected fathead minnows were similar to or lower than those detected in many municipal wastewater effluents. In conclusion, life-cycle exposure of fathead minnows proved to be a very sensitive bioassay, and responses were seen at concentrations of less than 1 ng/L, which are environmentally relevant concentrations of EE2. © 2005 Government of Canada. Exclusive worldwide publication rights in the article have been transferred to John Wiley & Sons, Inc. Environ Toxicol 20: 131,141, 2005. [source] Relationship between biotic ligand model-based water quality criteria and avoidance and olfactory responses to copper by fishENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2010Joseph S. Meyer Abstract The U.S. Environmental Protection Agency's (U.S. EPA) water quality criteria for Cu were tested to determine whether they protect fish against neurophysiological impairment. From published studies with rainbow trout (Oncorhynchus mykiss), Chinook salmon (Oncorhynchus tshawytscha), coho salmon (Oncorhynchus kisutch), and fathead minnows (Pimephales promelas), 20% inhibition concentrations (IC20s) were calculated for avoidance of Cu-containing water and for impairment of electroencephalogram (EEG) and electro-olfactogram (EOG) responses to natural odorants in Cu-containing water. Additionally, a Cu-olfactory biotic ligand model (BLM) that fits the coho salmon EOG data was parameterized by changing the sensitivity parameter in the ionoregulatory-based BLM. The IC20s calculated from reported Cu avoidance, EEG, and EOG data and IC20s predicted by the olfactory BLM were compared with acute and chronic Cu criteria calculated using U.S. EPA's BLM 2007 or hardness-adjustment equations. The BLM-based chronic criteria were protective in all 16 exposure water,species combinations used in avoidance and olfaction experiments. Additionally, the BLM-based acute criteria were protective in all 11 exposure water,species combinations in which comparisons could be made with olfactory BLM-predicted IC20s but not in two of the 16 exposure water,species combinations in which comparisons could be made with the reported IC20s (which were ,8% lower than but did not differ significantly from the BLM-based acute criteria; p,>,0.05). In effect, the olfactory BLM factored out the relatively high variability in the reported IC20s. It is concluded that the U.S. EPA's BLM-based water quality criteria for Cu protect against these types of neurophysiological impairment in the six species,endpoint combinations analyzed in this paper. However, the U.S. EPA's hardness-based criteria for Cu sometimes were considerably underprotective and sometimes were much less protective than the BLM-based criteria. Environ. Toxicol. Chem. 2010;29:2096,2103. © 2010 SETAC [source] Investigating the link between pulp mill effluent and endocrine disruption: Attempts to explain the presence of intersex fish in the Wabigoon River, Ontario, CanadaENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2010Michael S. Pollock Abstract The ability of some pulp mill effluents (PME) to act as reproductive and endocrine disrupters in fish is well documented in the literature. However, changes are not always consistent with regard to species, gender, hormones, or reproductive effects. In the present study, the presence of the first intersexed fish that, to our knowledge, has been found in a Canadian river exposed to PME, is reported. A field survey of the Wabigoon River near Dryden, Ontario, in the fall of 2000 found intersexed walleye (Sander vitreus vitreus) with significantly altered hormone levels and reduced gonad size. The Wabigoon River receives discharge from a bleached kraft pulp and paper mill and a municipal wastewater (MWW) plant. It also has historical sediment contamination (wood fiber mats) contributing to extended periods of low dissolved oxygen under low flow, drought conditions. A mesocosm-based partial life cycle test exposing fathead minnows (Pimephales promelas) to reference water, 20% effluent volume to river volume (v/v), 40% (v/v), or 60% (v/v) PME as well as a field survey of the walleye in the Wabigoon River were conducted. The only change in our mesocosm exposure was a decrease in testosterone in males with increasing effluent concentration and vitellogenin induction in males exposed to 60% (v/v) effluent. These results did not reflect the magnitude of endocrine disruption seen in the wild fish survey. Several hypotheses that may explain these discrepancies are proposed. Specifically, evidence is offered from published studies indicating that either hypoxia or MWW, alone or in combination with PME, may explain the discrepancy between our field experiment and the wild fish survey. The present study illustrates the complexities of multistressor receiving environments and the need for the development of cumulative effects assessment approaches. Environ. Toxicol. Chem. 2010;29:952,965. © 2010 SETAC [source] Accumulation and DNA damage in fathead minnows (Pimephales promelas) exposed to 2 brominated flame-retardant mixtures, Firemaster® 550 and Firemaster® BZ-54ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2010Jonathan S. Bearr Abstract Firemaster® 550 and Firemaster® BZ-54 are two brominated formulations that are in use as replacements for polybrominated diphenyl ether (PBDE) flame retardants. Two major components of these mixtures are 2,3,4,5-tetrabromo-ethylhexylbenzoate (TBB) and 2,3,4,5-tetrabromo-bis(2-ethylhexyl) phthalate (TBPH). Both have been measured in environmental matrices; however, scant toxicological information exists. The present study aimed to determine if these brominated flame-retardant formulations are bioavailable and adversely affect DNA integrity in fish. Fathead minnows (Pimephales promelas) were orally exposed to either FM 550, FM BZ54, or the nonbrominated form of TBPH, di-(2-ethylhexyl) phthalate (DEHP) for 56 d and depurated (e.g., fed clean food) for 22 d. At several time points, liver and blood cells were collected and assessed for DNA damage. Homogenized fish tissues were extracted and analyzed on day 0 and day 56 to determine the residue of TBB and TBPH and the appearance of any metabolites using gas chromatography-electron-capture negative ion mass spectrometry (GC/ECNI-MS). Significant increases (p,<,0.05) in DNA strand breaks from liver cells (but not blood cells) were observed during the exposure period compared with controls, although during depuration these levels returned to control. Both parent compounds, TBB and TBPH, were detected in tissues at approximately 1% of daily dosage along with brominated metabolites. The present study provides evidence for accumulation, metabolism, and genotoxicity of these new formulation flame retardants in fish and highlights the potential adverse effects of TBB- and TBPH-formulated fire retardants to aquatic species. Environ. Toxicol. Chem. 2010;29:722,729. © 2009 SETAC [source] Effects of lipid-lowering pharmaceuticals bezafibrate and clofibric acid on lipid metabolism in fathead minnow (Pimephales promelas),ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 12 2009Anna Weston Abstract The lipid-lowering agents bezafibrate and clofibric acid, which occur at concentrations up to 3.1 and 1.6 ,L, respectively, are among the most frequently found human pharmaceuticals in the aquatic environment. In contrast to knowledge about their environmental occurrence, little is known about their effects in the environment. The aim of the present study was to analyze effects of these lipid-lowering agents in fish by focusing on their modes of action, lipid metabolism. Fathead minnows were exposed in aquaria to measured concentrations of 0.1, 1.27, 10.18, 101.56, and 106.7 mg/L bezafibrate and to 1.07, 10.75, and 108.91 mg/L clofibric acid for 14 and 21 d, respectively. After exposure, fish liver was analyzed for expression of peroxisome proliferator-activated receptor , (PPAR,) by quantitative polymerase chain reaction (PCR), and the PPAR-regulated enzyme fatty acyl-coenzyme-A oxidase (FAO) involved in fatty acid oxidation. Bezafibrate had no effect, either on PPAR, expression or on FAO activity, at all concentrations. In contrast, clofibric acid induced FAO activity in male fathead minnows at 108.91 mg/L. No increase in expression of PPAR, messenger ribonucleic acid was observed. Egg production was apparently decreased after 21 d of exposure to 108.91 mg/L clofibric acid. The present study demonstrates that bezafibrate has very little or no effect on PPAR, expression and FAO activity, but clofibric acid affects FAO activity. [source] |