Home About us Contact | |||
Fate Map (fate + map)
Selected AbstractsPhylogenetic analysis of developmental and postnatal mouse cell lineagesEVOLUTION AND DEVELOPMENT, Issue 1 2010Stephen J. Salipante SUMMARY Fate maps depict how cells relate together through past lineage relationships, and are useful tools for studying developmental and somatic processes. However, with existing technologies, it has not been possible to generate detailed fate maps of complex organisms such as the mouse. We and others have therefore proposed a novel approach, "phylogenetic fate mapping," where patterns of somatic mutation carried by the individual cells of an animal are used to retrospectively deduce lineage relationships through phylogenetic inference. Here, we have cataloged genomic polymorphisms at 324 mutation-prone polyguanine tracts for nearly 300 cells isolated from a single mouse, and have explored the cells' lineage relationships both phylogenetically and through a network-based approach. We present a model of mouse embryogenesis, where an early period of substantial cell mixing is followed by more coherent growth of clones later. We find that cells from certain tissues have greater numbers of close relatives in other specific tissues than expected from chance, suggesting that those populations arise from a similar pool of ancestral lineages. Finally, we have investigated the dynamics of cell turnover (the frequency of cell loss and replacement) in postnatal tissues. This work offers a longitudinal study of developmental lineages, from conception to adulthood, and provides insight into basic questions of mouse embryology as well as the somatic processes that occur after birth. [source] Rethinking axial patterning in amphibiansDEVELOPMENTAL DYNAMICS, Issue 4 2002Mary Constance Lane Abstract Recent revisions in the Xenopus laevis fate map led to the designation of the rostral/caudal axis and reassignment of the dorsal/ventral axis (Lane and Smith [1999] Development 126:423,434; Lane and Sheets [2000] Dev. Biol. 225:37,58). It is unprecedented to reassign primary embryonic axes after many years of research in a model system. In this review, we use insights about vertebrate development from anatomy and comparative embryology, as well as knowledge about gastrulation in frogs, to reexamine several traditional amphibian fate maps. We show that four extant maps contain information on the missing rostral/caudal axis. These maps support the revised map as well as the designation of the rostral/caudal axis and reassignment of the dorsal/ventral axes. To illustrate why it is important for researchers to use the revised map and nomenclature when thinking about frog and fish embryos, we present an example of alternative interpretations of "dorsalized" zebrafish mutations. © 2002 Wiley-Liss, Inc. [source] Generation of a transgenic mouse line expressing GFP-Cre protein from a Hoxb4 neural enhancerGENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 2 2008Elena Rivkin Abstract Here, we describe a transgenic mouse line, in which expression of green fluorescent protein fused to Cre recombinase (GFP-Cre) is directed by the early neuronal enhancer (ENE) of Hoxb4. In E9.0,13.5 transgenic embryos, Cre activity coincided with endogenous Hoxb4 throughout the neural tube up to the r6/r7 boundary in the hindbrain, the dorsal root ganglia, and the Xth cranial ganglia. Unexpectedly, Cre activity was also consistently detected in the trigeminal (Vth) cranial nerve, which is devoid of endogenous Hoxb4 expression. Strong GFP dependent fluorescence appeared slightly later in E9.5,E11.5 embryos, and reflected the later expression pattern expected for Hoxb4-ENE directed expression in the neural tube up to the r7/r8 not r6/r7 boundary. Thus, with the exception of the trigeminal nerve, this reporter faithfully reproduces endogenous embryonic neural Hoxb4 expression, and provides an excellent reagent for in vivo gene manipulations in neuronal Hoxb4 positive cells as well as the developing trigeminal nerve. This transgenic mouse line should prove especially useful for determining the fate map of neuronal populations arising in rhombomeres 7 and 8 on its own and in combination with the small set of other existing rhombomere-specific Cre recombinase expressing lines. genesis 46:119,124, 2008. © 2008 Wiley-Liss, Inc. [source] Estimating the spatiotemporal pattern of volumetric growth rate from fate maps in chick limb developmentDEVELOPMENTAL DYNAMICS, Issue 2 2009Yoshihiro Morishita Abstract Morphogenesis is achieved through volumetric growth of tissue at a rate varying over space and time. The volumetric growth rate of each piece of tissue reflects the behaviors of constituent cells such as cell proliferation and death. Hence, clarifying its spatiotemporal pattern accurately is a key to bridge between cell behaviors and organ morphogenesis. We here propose a new method to estimate the spatiotemporal pattern of volumetric growth rate from fate map data with limited resolution on space and time by using a mathematical model. We apply the method to chick wing data along the proximodistal axis, and find that the volumetric growth pattern is biphasic: it is spatially uniform in earlier stages (until stage 23), but in later stages the volumetric growth occurs approximately 4.5 times as fast as in the distal region (within approximately 100 ,m from the limb tip) than in the proximal region. Developmental Dynamics 238:415,422, 2009. © 2009 Wiley-Liss, Inc. [source] Rethinking axial patterning in amphibiansDEVELOPMENTAL DYNAMICS, Issue 4 2002Mary Constance Lane Abstract Recent revisions in the Xenopus laevis fate map led to the designation of the rostral/caudal axis and reassignment of the dorsal/ventral axis (Lane and Smith [1999] Development 126:423,434; Lane and Sheets [2000] Dev. Biol. 225:37,58). It is unprecedented to reassign primary embryonic axes after many years of research in a model system. In this review, we use insights about vertebrate development from anatomy and comparative embryology, as well as knowledge about gastrulation in frogs, to reexamine several traditional amphibian fate maps. We show that four extant maps contain information on the missing rostral/caudal axis. These maps support the revised map as well as the designation of the rostral/caudal axis and reassignment of the dorsal/ventral axes. To illustrate why it is important for researchers to use the revised map and nomenclature when thinking about frog and fish embryos, we present an example of alternative interpretations of "dorsalized" zebrafish mutations. © 2002 Wiley-Liss, Inc. [source] |