Home About us Contact | |||
Family Molecules (family + molecule)
Selected AbstractsREVIEW ARTICLE: B7 Family Molecules as Regulators of the Maternal Immune System in PregnancyAMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 6 2010Margaret G. Petroff Citation Petroff MG, Perchellet A. B7 family molecules as regulators of the maternal immune system in pregnancy. Am J Reprod Immunol 2010 Placental and fetal growth and development are associated with chronic exposure of the maternal immune system to fetally derived, paternally inherited antigens. Because maternal lymphocytes are aware of fetal antigens, active tolerance mechanisms are required to ensure unperturbed progression of pregnancy and delivery of a healthy newborn. These mechanisms of tolerance may include deletion, receptor downregulation, and anergy of fetal antigen-specific cells in lymphoid tissues, as well as regulation at the maternal,fetal interface by a variety of locally expressed immunoregulatory molecules. The B7 family of costimulatory molecules comprises one group of immunoregulatory molecules present in the decidua and placenta. B7 family members mediate both inhibitory and stimulatory effects on T-cell activation and effector functions and may play a critical role in maintaining tolerance to the fetus. Here, we review the known functions of the B7 family proteins in pregnancy. [source] Nucleocytoplasmic protein traffic and its significance to cell functionGENES TO CELLS, Issue 10 2000Yoshihiro Yoneda In eukaryotic cells, cell functions are maintained in an orderly manner through the continuous traffic of various proteins between the cell nucleus and the cytoplasm. The nuclear import and export of proteins occurs through nuclear pore complexes and typically requires specific signals: the nuclear localization signal and nuclear export signal, respectively. The transport pathways have been found to be highly divergent, but are known to be largely mediated by importin ,-like transport receptor family molecules. These receptor molecules bind to and carry their cargoes directly or via adapter molecules. A small GTPase Ran ensures the directionality of nuclear transport by regulating the interaction between the receptors and their cargoes through its GTP/GDP cycle. Moreover, it has been recently elucidated how the transport system is involved in various functions of cell physiology, such as cell cycle control. [source] Induction of cytotoxicity in human lung adenocarcinoma cells by 6- O -carboxypropyl-,-tocotrienol, a redox-silent derivative of ,-tocotrienolINTERNATIONAL JOURNAL OF CANCER, Issue 5 2005Yoshihisa Yano Abstract Tocotrienols are one of the most potent anticancer agents of all natural compounds and the anticancer property may be related to the inactivation of Ras family molecules. The anticancer potential of tocotrienols, however, is weakened due to its short elimination half life in vivo. To overcome the disadvantage and reinforce the anticancer activity in tocotrienols, we synthesized a redox-silent analogue of ,-tocotrienol (T3), 6- O -carboxypropyl-,-tocotrienol (T3E). We estimated the possibility of T3E as a new anticancer agent against lung adenocarcinoma showing poor prognosis based on the mutation of ras gene. T3E showed cytotoxicity against A549 cells, a human lung adenocarcinoma cell line with a ras gene mutation, in a dose-dependent manner (0,40 ,M), whereas T3 and a redox-silent analogue of ,-tocopherol (T), 6- O -carboxypropyl-,-tocopherol (TE), showed much less cytotoxicity in cells within 40 ,M. T3E cytotoxicity was based on the accumulation of cells in the G1-phase of the cell-cycle and the subsequent induction of apoptosis. Similar to this event, 24-hr treatment of A549 cells with 40 ,M T3E caused the inhibition of Ras farnesylation, and a marked decrease in the levels of cyclin D required for G1/S progression in the cell-cycle and Bcl-xL, a key anti-apoptotic molecule. Moreover, the T3E-dependent inhibition of RhoA geranyl-geranylation is an inducing factor for the occurrence of apoptosis in A549 cells. Our results suggest that T3E suppresses Ras and RhoA prenylation, leading to negative growth control against A549 cells. In conclusion, a redox-silent analogue of T3, T3E may be a new candidate as an anticancer agent against lung adenocarcinoma showing poor prognosis based on the mutation of ras genes. © 2005 Wiley-Liss, Inc. [source] REVIEW ARTICLE: B7 Family Molecules as Regulators of the Maternal Immune System in PregnancyAMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 6 2010Margaret G. Petroff Citation Petroff MG, Perchellet A. B7 family molecules as regulators of the maternal immune system in pregnancy. Am J Reprod Immunol 2010 Placental and fetal growth and development are associated with chronic exposure of the maternal immune system to fetally derived, paternally inherited antigens. Because maternal lymphocytes are aware of fetal antigens, active tolerance mechanisms are required to ensure unperturbed progression of pregnancy and delivery of a healthy newborn. These mechanisms of tolerance may include deletion, receptor downregulation, and anergy of fetal antigen-specific cells in lymphoid tissues, as well as regulation at the maternal,fetal interface by a variety of locally expressed immunoregulatory molecules. The B7 family of costimulatory molecules comprises one group of immunoregulatory molecules present in the decidua and placenta. B7 family members mediate both inhibitory and stimulatory effects on T-cell activation and effector functions and may play a critical role in maintaining tolerance to the fetus. Here, we review the known functions of the B7 family proteins in pregnancy. [source] |